Application of Machine Learning Techniques to Improve Multi-Radar Multi-Sensor (MRMS) Precipitation Estimates in the Western United StatesSource: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002Author:Osborne, Andrew P.
,
Zhang, Jian
,
Simpson, Micheal J.
,
Howard, Kenneth W.
,
Cocks, Stephen B.
DOI: 10.1175/AIES-D-22-0053.1Publisher: American Meteorological Society
|
Collections
Show full item record
contributor author | Osborne, Andrew P. | |
contributor author | Zhang, Jian | |
contributor author | Simpson, Micheal J. | |
contributor author | Howard, Kenneth W. | |
contributor author | Cocks, Stephen B. | |
date accessioned | 2024-12-24T14:23:47Z | |
date available | 2024-12-24T14:23:47Z | |
date copyright | 01 Apr. 2023 | |
date issued | 2023 | |
identifier other | aies-AIES-D-22-0053.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4300667 | |
language | English | |
publisher | American Meteorological Society | |
title | Application of Machine Learning Techniques to Improve Multi-Radar Multi-Sensor (MRMS) Precipitation Estimates in the Western United States | |
type | Journal Paper | |
journal volume | 2 | |
journal issue | 2 | |
journal title | Artificial Intelligence for the Earth Systems | |
identifier doi | 10.1175/AIES-D-22-0053.1 | |
journal lastpage | 220053 | |
tree | Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002 | |
contenttype | Fulltext |