Using Machine Learning to Estimate Nonorographic Gravity Wave Characteristics at Source LevelsSource: Journal of the Atmospheric Sciences:;2023:;volume( 080 ):;issue: 002::page 419DOI: 10.1175/JAS-D-22-0021.1Publisher: American Meteorological Society
|
Collections
Show full item record
contributor author | Amiramjadi, Mozhgan | |
contributor author | Plougonven, Riwal | |
contributor author | Mohebalhojeh, Ali R. | |
contributor author | Mirzaei, Mohammad | |
date accessioned | 2024-12-24T14:21:02Z | |
date available | 2024-12-24T14:21:02Z | |
date copyright | 01 Feb. 2023 | |
date issued | 2023 | |
identifier other | atsc-JAS-D-22-0021.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4300592 | |
language | English | |
publisher | American Meteorological Society | |
title | Using Machine Learning to Estimate Nonorographic Gravity Wave Characteristics at Source Levels | |
type | Journal Paper | |
journal volume | 80 | |
journal issue | 2 | |
journal title | Journal of the Atmospheric Sciences | |
identifier doi | 10.1175/JAS-D-22-0021.1 | |
journal fristpage | 419 | |
journal lastpage | 440 | |
tree | Journal of the Atmospheric Sciences:;2023:;volume( 080 ):;issue: 002 | |
contenttype | Fulltext |