YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Predictive Model for Estimation of the Degree of Reclaimed Asphalt Pavement Bitumen Activity

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 011::page 04024364-1
    Author:
    Tejaswini Lakshmi Tavva
    ,
    P. V. Arjun
    ,
    Kusam Sudhakar Reddy
    DOI: 10.1061/JMCEE7.MTENG-18256
    Publisher: American Society of Civil Engineers
    Abstract: The proportion of reclaimed asphalt pavement (RAP) bitumen that gets activated and coats the virgin aggregate during the initial stage of plant production of RAP mixes, in which the RAP material is initially mixed with superheated virgin aggregate, designated as the degree of RAP bitumen activity (DoA), is an important parameter influencing the quality and performance of the RAP mix. DoA is influenced by a variety of mix and process parameters. This paper presents an empirical model, developed using the results from a previous experimental investigation and those obtained from the additional experiments conducted in the present investigation, for prediction of the DoA of RAP binder under varying combinations of mix and process variables. The experimental investigation involved mixing separately identifiable size fractions of RAP material (1.18 to 4.75 mm) and virgin aggregate (9.5 to 26.5 mm) and measuring the quantity of RAP bitumen transferred to virgin aggregate to estimate the DoA. The 41 sets of experimental data considered for the development of the empirical model covered different RAP material proportions (15% to 75%), RAP binder quality (softening point of 69°C to 78°C), RAP binder content (4.0% to 6.0%), mixing duration (0.5 to 3 min), mixing temperature (70°C to 180°C), and superheating temperature of virgin aggregate (155°C to 197.5°C). The gradation and shape of the RAP material used in different coating experiments were also different. Additional experiments were carried out in the present investigation to study the effect of superheating temperature of virgin aggregates. DoA decreased exponentially with RAP bitumen stiffness and RAP content, whereas it increased with mixing temperature, mixing time, RAP bitumen content, and the proportion of coarser RAP material. The superheating temperature of virgin aggregate did not affect DoA significantly. A regression model was developed for estimation of DoA with reasonable accuracy without having to carry out the coating experiments. Such a predictive model is useful for obtaining inputs for the estimation of the quality of final binder blend in the RAP mix.
    • Download: (2.972Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Predictive Model for Estimation of the Degree of Reclaimed Asphalt Pavement Bitumen Activity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299377
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorTejaswini Lakshmi Tavva
    contributor authorP. V. Arjun
    contributor authorKusam Sudhakar Reddy
    date accessioned2024-12-24T10:41:30Z
    date available2024-12-24T10:41:30Z
    date copyright11/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-18256.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299377
    description abstractThe proportion of reclaimed asphalt pavement (RAP) bitumen that gets activated and coats the virgin aggregate during the initial stage of plant production of RAP mixes, in which the RAP material is initially mixed with superheated virgin aggregate, designated as the degree of RAP bitumen activity (DoA), is an important parameter influencing the quality and performance of the RAP mix. DoA is influenced by a variety of mix and process parameters. This paper presents an empirical model, developed using the results from a previous experimental investigation and those obtained from the additional experiments conducted in the present investigation, for prediction of the DoA of RAP binder under varying combinations of mix and process variables. The experimental investigation involved mixing separately identifiable size fractions of RAP material (1.18 to 4.75 mm) and virgin aggregate (9.5 to 26.5 mm) and measuring the quantity of RAP bitumen transferred to virgin aggregate to estimate the DoA. The 41 sets of experimental data considered for the development of the empirical model covered different RAP material proportions (15% to 75%), RAP binder quality (softening point of 69°C to 78°C), RAP binder content (4.0% to 6.0%), mixing duration (0.5 to 3 min), mixing temperature (70°C to 180°C), and superheating temperature of virgin aggregate (155°C to 197.5°C). The gradation and shape of the RAP material used in different coating experiments were also different. Additional experiments were carried out in the present investigation to study the effect of superheating temperature of virgin aggregates. DoA decreased exponentially with RAP bitumen stiffness and RAP content, whereas it increased with mixing temperature, mixing time, RAP bitumen content, and the proportion of coarser RAP material. The superheating temperature of virgin aggregate did not affect DoA significantly. A regression model was developed for estimation of DoA with reasonable accuracy without having to carry out the coating experiments. Such a predictive model is useful for obtaining inputs for the estimation of the quality of final binder blend in the RAP mix.
    publisherAmerican Society of Civil Engineers
    titleA Predictive Model for Estimation of the Degree of Reclaimed Asphalt Pavement Bitumen Activity
    typeJournal Article
    journal volume36
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-18256
    journal fristpage04024364-1
    journal lastpage04024364-17
    page17
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian