YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Permittivity Heterogeneity Influence of Multiphase Pavement Materials on Ground-Penetrating Radar Detection Results: A Study Based on Probability Distribution

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 011::page 04024347-1
    Author:
    Jianwei Fan
    ,
    Yiming Zhang
    ,
    Tao Ma
    ,
    Weiguang Zhang
    ,
    Yajing Zhu
    ,
    Hanglin Cheng
    DOI: 10.1061/JMCEE7.MTENG-18185
    Publisher: American Society of Civil Engineers
    Abstract: For ground-penetrating radar (GPR) detection, multiphase heterogeneous pavement models were built and on-site detections were conducted. The statistic distribution rules of relative permittivity in pavement materials including asphalt mixture and cement-stabilized macadam were determined, and the heterogeneous error correction method of the layer thickness and distress buried depth were studied. The heterogeneous interferences in the A-scan curve before and after interlayer reflection wave filtering were quantified. The relationship between the crack width and homogeneous reflection wave was proposed, and the heterogeneous interference on the identification of the internal crack in the surface layer was discussed. The results show that the relative permittivity values of the surface and base layers obey Gaussian distribution obviously. Heterogeneous error formulas of the layer thickness and distress buried depth were proposed, and the concept of assurance rate was introduced in the error correction. The heterogeneous interference ratio (HIR) index was proposed to represent the heterogeneous interference in A-scan curves, and its Gaussian distribution characteristics were put forward. The heterogeneous interference increases with the wave frequency increase, and the standard deviation of HIR in the surface layer is higher than that in the base layer because of its finer gradation. The average value subtraction method filters the interlayer boundary reflection wave, which has no or minimal influence on the mean value and standard deviation of HIR, respectively. The crack interference ratio (CIR) index was proposed to quantify the heterogeneous interference on the crack reflection wave. Higher wave frequency, wider crack width, and higher water content of the crack medium are conducive to decrease the heterogeneous interference on the crack identification. The reflection waves of the millimeter-scale internal cracks have close magnitude compared with the heterogeneous interference wave, so filtering the heterogeneous interference wave is the premise to identify the millimeter-scale internal cracks in the surface layer.
    • Download: (6.889Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Permittivity Heterogeneity Influence of Multiphase Pavement Materials on Ground-Penetrating Radar Detection Results: A Study Based on Probability Distribution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299366
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJianwei Fan
    contributor authorYiming Zhang
    contributor authorTao Ma
    contributor authorWeiguang Zhang
    contributor authorYajing Zhu
    contributor authorHanglin Cheng
    date accessioned2024-12-24T10:41:07Z
    date available2024-12-24T10:41:07Z
    date copyright11/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-18185.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299366
    description abstractFor ground-penetrating radar (GPR) detection, multiphase heterogeneous pavement models were built and on-site detections were conducted. The statistic distribution rules of relative permittivity in pavement materials including asphalt mixture and cement-stabilized macadam were determined, and the heterogeneous error correction method of the layer thickness and distress buried depth were studied. The heterogeneous interferences in the A-scan curve before and after interlayer reflection wave filtering were quantified. The relationship between the crack width and homogeneous reflection wave was proposed, and the heterogeneous interference on the identification of the internal crack in the surface layer was discussed. The results show that the relative permittivity values of the surface and base layers obey Gaussian distribution obviously. Heterogeneous error formulas of the layer thickness and distress buried depth were proposed, and the concept of assurance rate was introduced in the error correction. The heterogeneous interference ratio (HIR) index was proposed to represent the heterogeneous interference in A-scan curves, and its Gaussian distribution characteristics were put forward. The heterogeneous interference increases with the wave frequency increase, and the standard deviation of HIR in the surface layer is higher than that in the base layer because of its finer gradation. The average value subtraction method filters the interlayer boundary reflection wave, which has no or minimal influence on the mean value and standard deviation of HIR, respectively. The crack interference ratio (CIR) index was proposed to quantify the heterogeneous interference on the crack reflection wave. Higher wave frequency, wider crack width, and higher water content of the crack medium are conducive to decrease the heterogeneous interference on the crack identification. The reflection waves of the millimeter-scale internal cracks have close magnitude compared with the heterogeneous interference wave, so filtering the heterogeneous interference wave is the premise to identify the millimeter-scale internal cracks in the surface layer.
    publisherAmerican Society of Civil Engineers
    titlePermittivity Heterogeneity Influence of Multiphase Pavement Materials on Ground-Penetrating Radar Detection Results: A Study Based on Probability Distribution
    typeJournal Article
    journal volume36
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-18185
    journal fristpage04024347-1
    journal lastpage04024347-19
    page19
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian