YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Physicochemical and Rheological Properties of Terminal Blend Rubberized Asphalt Incorporating Polymer

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 009::page 04024283-1
    Author:
    Naipeng Tang
    ,
    Chenyang Xue
    ,
    Gengren Hao
    ,
    Weidong Huang
    ,
    Shaopeng Liu
    ,
    Hongzhou Zhu
    DOI: 10.1061/JMCEE7.MTENG-18125
    Publisher: American Society of Civil Engineers
    Abstract: Waste tires, used in combination with polymers, have been extensively employed in the construction of asphalt pavements. The performance of these hybrid asphalts varies depending on the manufacturing process, the characteristics of the neat binder, and other factors. The present study aims to investigate the effect of crumb rubber, polymer, and neat asphalt on physicochemical and rheological properties of terminal blend rubberized asphalt (TBRA). Thermal gravimetric (TG) testing was performed to analyze the component distribution of different crumb rubber modifiers (CRMs). Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and solubility and storage stability tests were used to characterize the physicochemical properties of TBRA binders. The rotational viscosity (RV) test, high-temperature performance grade (PG), and rheological master curve were used to compare the rheological properties of various TBRA binders, respectively. Results indicated that crumb rubber and neat binder characteristics, as well as the addition of polymer, impact TBRA performance. However, the influence of neat binder and polymer is more significant than that of crumb rubber. The primary differences in the physicochemical properties of TBRA prepared with different crumb rubber types are related to solubility and degradation degree. The interaction between Zhonghai neat asphalt and crumb rubber is weaker than that of ESSO and Jinshan asphalt, as evidenced by a comparison of molecular weight distribution. Moreover, 3.0% styrene-butadiene-styrene (SBS) polymer can significantly improves the elastic property of TBRA produced with ESSO neat asphalt, which is evidenced by similar phase angle plateau region with 4.5% SBS modified asphalt.
    • Download: (973.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Physicochemical and Rheological Properties of Terminal Blend Rubberized Asphalt Incorporating Polymer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299358
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorNaipeng Tang
    contributor authorChenyang Xue
    contributor authorGengren Hao
    contributor authorWeidong Huang
    contributor authorShaopeng Liu
    contributor authorHongzhou Zhu
    date accessioned2024-12-24T10:40:47Z
    date available2024-12-24T10:40:47Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-18125.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299358
    description abstractWaste tires, used in combination with polymers, have been extensively employed in the construction of asphalt pavements. The performance of these hybrid asphalts varies depending on the manufacturing process, the characteristics of the neat binder, and other factors. The present study aims to investigate the effect of crumb rubber, polymer, and neat asphalt on physicochemical and rheological properties of terminal blend rubberized asphalt (TBRA). Thermal gravimetric (TG) testing was performed to analyze the component distribution of different crumb rubber modifiers (CRMs). Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and solubility and storage stability tests were used to characterize the physicochemical properties of TBRA binders. The rotational viscosity (RV) test, high-temperature performance grade (PG), and rheological master curve were used to compare the rheological properties of various TBRA binders, respectively. Results indicated that crumb rubber and neat binder characteristics, as well as the addition of polymer, impact TBRA performance. However, the influence of neat binder and polymer is more significant than that of crumb rubber. The primary differences in the physicochemical properties of TBRA prepared with different crumb rubber types are related to solubility and degradation degree. The interaction between Zhonghai neat asphalt and crumb rubber is weaker than that of ESSO and Jinshan asphalt, as evidenced by a comparison of molecular weight distribution. Moreover, 3.0% styrene-butadiene-styrene (SBS) polymer can significantly improves the elastic property of TBRA produced with ESSO neat asphalt, which is evidenced by similar phase angle plateau region with 4.5% SBS modified asphalt.
    publisherAmerican Society of Civil Engineers
    titleEvaluation of Physicochemical and Rheological Properties of Terminal Blend Rubberized Asphalt Incorporating Polymer
    typeJournal Article
    journal volume36
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-18125
    journal fristpage04024283-1
    journal lastpage04024283-12
    page12
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian