YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strategies for Developing High-Volume Fly Ash Concrete with High Early-Age Strength for Precast Applications

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 010::page 04024335-1
    Author:
    Zacharia Sao
    ,
    Gopakumar Kaladharan
    ,
    Jinyoung Yoon
    ,
    Chiranjeevi Reddy Kamasani
    ,
    Farshad Rajabipour
    ,
    Matthew J. Gombeda
    DOI: 10.1061/JMCEE7.MTENG-18004
    Publisher: American Society of Civil Engineers
    Abstract: Partial replacement of portland cement with supplementary cementitious materials (SCMs), such as fly ash, is an effective strategy for improving durability and reducing the CO2 footprint of concrete. However, using high-volume fly ash (HVFA) binders in precast and prestressed concrete is currently limited; largely due to reduced early-age strength development that impedes rapid production and prestressing of precast concrete. To investigate and address this challenge, HVFA mortars with a minimum of 40% fly ash by mass of cementitious materials were developed and tested in this study. Two fresh fly ashes (an ASTM C618 Class F and a Class C) and a landfilled fly ash (Class F) were included. Various strategies for improving the early strength were evaluated, including gypsum optimization, chemical accelerators, steam curing, use of CSA cements, and adding other reactive SCMs like silica fume, calcined clay, and slag cement. Steam curing and the use of CSA cement at high dosages (40% of total binder) were found to be the most successful strategies across all three fly ashes. Additionally, significant improvements were observed with gypsum optimization (for Class C fly ash) and the use of accelerators (for Class F fly ashes), and these strategies are likely to be more feasible considering later-age strength and economic viability. Interestingly, HVFA mixtures made with the landfilled fly ash used in this study were able to achieve high early strengths with water-to-cementitious materials ratio adjustment alone. These HVFA mixtures were also found to be less responsive to accelerators when compared to the fresh Class F fly ash, highlighting an important distinction between the materials despite the similarity in chemical composition.
    • Download: (1.709Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strategies for Developing High-Volume Fly Ash Concrete with High Early-Age Strength for Precast Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299341
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZacharia Sao
    contributor authorGopakumar Kaladharan
    contributor authorJinyoung Yoon
    contributor authorChiranjeevi Reddy Kamasani
    contributor authorFarshad Rajabipour
    contributor authorMatthew J. Gombeda
    date accessioned2024-12-24T10:40:14Z
    date available2024-12-24T10:40:14Z
    date copyright10/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-18004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299341
    description abstractPartial replacement of portland cement with supplementary cementitious materials (SCMs), such as fly ash, is an effective strategy for improving durability and reducing the CO2 footprint of concrete. However, using high-volume fly ash (HVFA) binders in precast and prestressed concrete is currently limited; largely due to reduced early-age strength development that impedes rapid production and prestressing of precast concrete. To investigate and address this challenge, HVFA mortars with a minimum of 40% fly ash by mass of cementitious materials were developed and tested in this study. Two fresh fly ashes (an ASTM C618 Class F and a Class C) and a landfilled fly ash (Class F) were included. Various strategies for improving the early strength were evaluated, including gypsum optimization, chemical accelerators, steam curing, use of CSA cements, and adding other reactive SCMs like silica fume, calcined clay, and slag cement. Steam curing and the use of CSA cement at high dosages (40% of total binder) were found to be the most successful strategies across all three fly ashes. Additionally, significant improvements were observed with gypsum optimization (for Class C fly ash) and the use of accelerators (for Class F fly ashes), and these strategies are likely to be more feasible considering later-age strength and economic viability. Interestingly, HVFA mixtures made with the landfilled fly ash used in this study were able to achieve high early strengths with water-to-cementitious materials ratio adjustment alone. These HVFA mixtures were also found to be less responsive to accelerators when compared to the fresh Class F fly ash, highlighting an important distinction between the materials despite the similarity in chemical composition.
    publisherAmerican Society of Civil Engineers
    titleStrategies for Developing High-Volume Fly Ash Concrete with High Early-Age Strength for Precast Applications
    typeJournal Article
    journal volume36
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-18004
    journal fristpage04024335-1
    journal lastpage04024335-13
    page13
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian