YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of Bioregenerant and Its Potential Application: Investigation for Regeneration of RAP Materials

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 009::page 04024282-1
    Author:
    Ying Fang
    ,
    Jianhua Yang
    ,
    Zhengqi Zhang
    ,
    Yanchao Wang
    DOI: 10.1061/JMCEE7.MTENG-17881
    Publisher: American Society of Civil Engineers
    Abstract: To achieve efficient utilization of reclaimed asphalt pavement (RAP) materials, a bioregenerant (BR) was developed in this research, and waste vegetable oil (WVO), alkylphenol polyoxyethylene ether (APEO), plasticizer [tributyl acetylcitrate (ATBC)] and tackifying resin (FTR) were chosen as components of the regenerant. The composition ratio of BR was designed based on the response surface method (RSM), and the optimal BR dosage and the regeneration effect of BR on the bioregenerated mixture (BRM) with different RAP contents were determined and investigated. Results showed that the optimal composition ratio of BR was found to be WVO-APEO-ATBC-FTR=100:2:23:10. The addition of BR significantly reduced the high-temperature stability and aging resistance of the mixture, but improved its low-temperature cracking resistance and fatigue resistance. Additionally, BR prominently contributed to the improvement for the water stability of the regenerated mixture, and its regeneration effect was found to be similar to that of two commercial regenerants, although excessive BR led to the decline of water stability. Moreover, the high-temperature stability and aging resistance of BRM when mixed with 20%, 30%, and 40% RAP were similar to those of the new asphalt mixture (NAM). At 20%, 30%, and 40% RAP content, both the low-temperature cracking resistance and fatigue resistance of BRM met the requirements. However, when the RAP content exceeded 40%, the water stability of BRM went beyond the specification limit. Taking into account the overall road performance, it is suggested that the optimal BR dosage is 5%–9%, and the maximum RAP content ensuring the road performance of BRM meets the requirements is 40%. These research findings will contribute to addressing the stacking problem of reclaimed asphalt pavement materials and environmental pollution, aligning with green and environmentally friendly sustainable development principles.
    • Download: (4.173Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of Bioregenerant and Its Potential Application: Investigation for Regeneration of RAP Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299315
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorYing Fang
    contributor authorJianhua Yang
    contributor authorZhengqi Zhang
    contributor authorYanchao Wang
    date accessioned2024-12-24T10:39:16Z
    date available2024-12-24T10:39:16Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-17881.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299315
    description abstractTo achieve efficient utilization of reclaimed asphalt pavement (RAP) materials, a bioregenerant (BR) was developed in this research, and waste vegetable oil (WVO), alkylphenol polyoxyethylene ether (APEO), plasticizer [tributyl acetylcitrate (ATBC)] and tackifying resin (FTR) were chosen as components of the regenerant. The composition ratio of BR was designed based on the response surface method (RSM), and the optimal BR dosage and the regeneration effect of BR on the bioregenerated mixture (BRM) with different RAP contents were determined and investigated. Results showed that the optimal composition ratio of BR was found to be WVO-APEO-ATBC-FTR=100:2:23:10. The addition of BR significantly reduced the high-temperature stability and aging resistance of the mixture, but improved its low-temperature cracking resistance and fatigue resistance. Additionally, BR prominently contributed to the improvement for the water stability of the regenerated mixture, and its regeneration effect was found to be similar to that of two commercial regenerants, although excessive BR led to the decline of water stability. Moreover, the high-temperature stability and aging resistance of BRM when mixed with 20%, 30%, and 40% RAP were similar to those of the new asphalt mixture (NAM). At 20%, 30%, and 40% RAP content, both the low-temperature cracking resistance and fatigue resistance of BRM met the requirements. However, when the RAP content exceeded 40%, the water stability of BRM went beyond the specification limit. Taking into account the overall road performance, it is suggested that the optimal BR dosage is 5%–9%, and the maximum RAP content ensuring the road performance of BRM meets the requirements is 40%. These research findings will contribute to addressing the stacking problem of reclaimed asphalt pavement materials and environmental pollution, aligning with green and environmentally friendly sustainable development principles.
    publisherAmerican Society of Civil Engineers
    titleDevelopment of Bioregenerant and Its Potential Application: Investigation for Regeneration of RAP Materials
    typeJournal Article
    journal volume36
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17881
    journal fristpage04024282-1
    journal lastpage04024282-20
    page20
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian