YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Preparation and Performance Characterization of Phosphogypsum Whisker Composite Modified Asphalt Binder

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 007::page 04024170-1
    Author:
    Peng Yin
    ,
    Baofeng Pan
    ,
    Zihan Li
    DOI: 10.1061/JMCEE7.MTENG-17855
    Publisher: American Society of Civil Engineers
    Abstract: Solid waste recycling and reuse have attracted great interest as environmentally friendly modifiers for asphalt pavements in recent years, and phosphogypsum whiskers (PSWs) synthesized by phosphogypsum (PSP) wastes were used as the main modifying material to develop an environmentally friendly asphalt binder in this study. PSWs could significantly enhance the deformation resistance and fatigue performance of asphalt binder but were prone to cracking at low temperature. To alleviate this problem, the novel idea of developing a PSW composite modified asphalt binder was proposed in this study. The organic coating method was used to surface modify PSWs by using surfactants and ultrasonic vibrator to enhance the compatibility of PSWs with asphalt binder. Then a composite modifier containing modified PSW (MPSW) was developed by the uniform design method (UDM), and the preparation process of the modifier was investigated by response surface method (RSM) on this basis. The physical performance of modified asphalt binder was investigated by conventional performance tests; the high-temperature performance, rutting resistance, and fatigue performance were investigated by several rheological tests; and the low-temperature performance was evaluated by the force ductility test (FDT). The microstructure and modification mechanism were characterized by the Fourier transform infrared spectroscopy (FTIR) test and differential scanning calorimetry (DSC) test. The results showed that the self-developed modifier (MPGJ-I) could effectively reduce the negative effects of MPSW on conventional physical properties, and it exhibited a significant aging resistance compared with other commonly used modifiers. In addition, the modified asphalt binder showed a significant enhancement in high-temperature performance, rutting resistance, and fatigue performance. The MPGJ-I not only solved the adverse effect of MPSW on low-temperature performance, but also enhanced the low-temperature performance to a certain degree. The MPGJ-I was only physically mixed with asphalt binder and did not change its chemical structure. The MPGJ-I reduced the influence of MPSW on glass transition temperature (Tg) and improved the thermodynamic properties of asphalt binder at low temperatures. The comparison study revealed that the MPGJ-I could comprehensively enhance the service performance of virgin asphalt binder, and the recommended dosage of MPGJ-I was 6%.
    • Download: (2.827Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Preparation and Performance Characterization of Phosphogypsum Whisker Composite Modified Asphalt Binder

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299313
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorPeng Yin
    contributor authorBaofeng Pan
    contributor authorZihan Li
    date accessioned2024-12-24T10:39:11Z
    date available2024-12-24T10:39:11Z
    date copyright7/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-17855.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299313
    description abstractSolid waste recycling and reuse have attracted great interest as environmentally friendly modifiers for asphalt pavements in recent years, and phosphogypsum whiskers (PSWs) synthesized by phosphogypsum (PSP) wastes were used as the main modifying material to develop an environmentally friendly asphalt binder in this study. PSWs could significantly enhance the deformation resistance and fatigue performance of asphalt binder but were prone to cracking at low temperature. To alleviate this problem, the novel idea of developing a PSW composite modified asphalt binder was proposed in this study. The organic coating method was used to surface modify PSWs by using surfactants and ultrasonic vibrator to enhance the compatibility of PSWs with asphalt binder. Then a composite modifier containing modified PSW (MPSW) was developed by the uniform design method (UDM), and the preparation process of the modifier was investigated by response surface method (RSM) on this basis. The physical performance of modified asphalt binder was investigated by conventional performance tests; the high-temperature performance, rutting resistance, and fatigue performance were investigated by several rheological tests; and the low-temperature performance was evaluated by the force ductility test (FDT). The microstructure and modification mechanism were characterized by the Fourier transform infrared spectroscopy (FTIR) test and differential scanning calorimetry (DSC) test. The results showed that the self-developed modifier (MPGJ-I) could effectively reduce the negative effects of MPSW on conventional physical properties, and it exhibited a significant aging resistance compared with other commonly used modifiers. In addition, the modified asphalt binder showed a significant enhancement in high-temperature performance, rutting resistance, and fatigue performance. The MPGJ-I not only solved the adverse effect of MPSW on low-temperature performance, but also enhanced the low-temperature performance to a certain degree. The MPGJ-I was only physically mixed with asphalt binder and did not change its chemical structure. The MPGJ-I reduced the influence of MPSW on glass transition temperature (Tg) and improved the thermodynamic properties of asphalt binder at low temperatures. The comparison study revealed that the MPGJ-I could comprehensively enhance the service performance of virgin asphalt binder, and the recommended dosage of MPGJ-I was 6%.
    publisherAmerican Society of Civil Engineers
    titlePreparation and Performance Characterization of Phosphogypsum Whisker Composite Modified Asphalt Binder
    typeJournal Article
    journal volume36
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17855
    journal fristpage04024170-1
    journal lastpage04024170-19
    page19
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian