YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Analysis of a Tunnel Subjected to Blast Loads in a Transversely Isotropic Rock Mass

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 010::page 04024214-1
    Author:
    Venkatesh M. Deshpande
    ,
    Tanusree Chakraborty
    DOI: 10.1061/IJGNAI.GMENG-9274
    Publisher: American Society of Civil Engineers
    Abstract: The present study investigates the stability of a tunnel subjected to blast loads. The tunnel is placed in a transversely isotropic rock mass. Numerical simulations are performed using the discrete-element method. The rock material between the bedding planes/joints is discretized as Voronoi polygons. The research focuses on the significance of discretizing the rock material between the bedding planes as Voronoi polygons for studying a tunnel’s stability under blast loads. To this end, the influence of Voronoi polygon size, joint spacing, anisotropy angle, cover depth, and earth pressure coefficient on the tunnel response are examined. The tunnel response is measured in terms of normalized crown displacement. The study provides many novel insights that can be used to improve the design of rock tunnels. It is found that it is vital to discretize rock grains as Voronoi blocks for studying the tunnel response. When Voronoi blocks are considered, the tunnel stability increases for anisotropy angles 30° and 60° but decreases for angles 0° and 90° when no Voronoi blocks are used. The tunnel becomes more vulnerable to damage as the Voronoi block size increases. It is noted that the joint spacing and Voronoi block size are interlinked, and their influence must be considered together for assessing the tunnel stability. When joint spacing is kept twice or more than the Voronoi size, the crown displacement is higher than when joint spacing is equal to or closer to the Voronoi size. It is observed that the crown displacement is maximum when the earth pressure coefficient equals 2. Therefore, the influence of change in the earth pressure coefficient is considered the most severe of all the parameters studied.
    • Download: (3.027Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Analysis of a Tunnel Subjected to Blast Loads in a Transversely Isotropic Rock Mass

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299289
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorVenkatesh M. Deshpande
    contributor authorTanusree Chakraborty
    date accessioned2024-12-24T10:38:23Z
    date available2024-12-24T10:38:23Z
    date copyright10/1/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-9274.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299289
    description abstractThe present study investigates the stability of a tunnel subjected to blast loads. The tunnel is placed in a transversely isotropic rock mass. Numerical simulations are performed using the discrete-element method. The rock material between the bedding planes/joints is discretized as Voronoi polygons. The research focuses on the significance of discretizing the rock material between the bedding planes as Voronoi polygons for studying a tunnel’s stability under blast loads. To this end, the influence of Voronoi polygon size, joint spacing, anisotropy angle, cover depth, and earth pressure coefficient on the tunnel response are examined. The tunnel response is measured in terms of normalized crown displacement. The study provides many novel insights that can be used to improve the design of rock tunnels. It is found that it is vital to discretize rock grains as Voronoi blocks for studying the tunnel response. When Voronoi blocks are considered, the tunnel stability increases for anisotropy angles 30° and 60° but decreases for angles 0° and 90° when no Voronoi blocks are used. The tunnel becomes more vulnerable to damage as the Voronoi block size increases. It is noted that the joint spacing and Voronoi block size are interlinked, and their influence must be considered together for assessing the tunnel stability. When joint spacing is kept twice or more than the Voronoi size, the crown displacement is higher than when joint spacing is equal to or closer to the Voronoi size. It is observed that the crown displacement is maximum when the earth pressure coefficient equals 2. Therefore, the influence of change in the earth pressure coefficient is considered the most severe of all the parameters studied.
    publisherAmerican Society of Civil Engineers
    titleNumerical Analysis of a Tunnel Subjected to Blast Loads in a Transversely Isotropic Rock Mass
    typeJournal Article
    journal volume24
    journal issue10
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9274
    journal fristpage04024214-1
    journal lastpage04024214-13
    page13
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian