YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strength Enhancement Mechanism of Slaked Lime on One-Part AAM Prepared from Sodium Carbonate–Activated Slag

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 011::page 04024343-1
    Author:
    Zhanghuang Zhu
    ,
    Yingli Gao
    ,
    Jingwen Liu
    ,
    Yuelin Li
    ,
    Zhengkang Li
    ,
    Juncai Zhu
    DOI: 10.1061/JMCEE7.MTENG-17743
    Publisher: American Society of Civil Engineers
    Abstract: Slaked lime was used to synergize with sodium carbonate to activate the slag. Experimental studies were carried out to investigate the effect of the proportion of activator on its workability and mechanical properties. The hydration products, microstructure changes, and strength enhancement mechanism were also explored by isothermal conduction calorimetry (ICC), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscope (SEM) tests. The results show that with the increase of slaked lime doping, the compressive strength increases and then decreases, the fluidity gradually decreases, and the setting time decreases and then increases. The maximum 7- and 28-day compressive strengths were 24.1 and 30.2 MPa at 6% slaked lime dosage, which were 4.8 times higher than those at 0% dosage. This is mainly due to the fact that the reaction products of slaked lime and sodium carbonate can promote the alkali activation reaction, in addition to the fact that higher Ca2+ in the system is favorable to promote C─ (A)─ S─ H generation. However, when the dosage of slaked lime is greater than 8%, the hydrated gel in the system decreases and precipitates more square flakes of Ca(OH)2, which reduces the interlayer bonding of the hydrated gel, thus reducing the strength. The slaked lime admixture can effectively promote the internal Si and Al dissolution and condensation of slag, improve the rate of hydration reaction, and promote the generation of hydration gel C─ (A)─ S─ H, so that the alkali-activated slag matrix is denser and the strength is improved.
    • Download: (4.250Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strength Enhancement Mechanism of Slaked Lime on One-Part AAM Prepared from Sodium Carbonate–Activated Slag

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299282
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZhanghuang Zhu
    contributor authorYingli Gao
    contributor authorJingwen Liu
    contributor authorYuelin Li
    contributor authorZhengkang Li
    contributor authorJuncai Zhu
    date accessioned2024-12-24T10:38:11Z
    date available2024-12-24T10:38:11Z
    date copyright11/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-17743.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299282
    description abstractSlaked lime was used to synergize with sodium carbonate to activate the slag. Experimental studies were carried out to investigate the effect of the proportion of activator on its workability and mechanical properties. The hydration products, microstructure changes, and strength enhancement mechanism were also explored by isothermal conduction calorimetry (ICC), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscope (SEM) tests. The results show that with the increase of slaked lime doping, the compressive strength increases and then decreases, the fluidity gradually decreases, and the setting time decreases and then increases. The maximum 7- and 28-day compressive strengths were 24.1 and 30.2 MPa at 6% slaked lime dosage, which were 4.8 times higher than those at 0% dosage. This is mainly due to the fact that the reaction products of slaked lime and sodium carbonate can promote the alkali activation reaction, in addition to the fact that higher Ca2+ in the system is favorable to promote C─ (A)─ S─ H generation. However, when the dosage of slaked lime is greater than 8%, the hydrated gel in the system decreases and precipitates more square flakes of Ca(OH)2, which reduces the interlayer bonding of the hydrated gel, thus reducing the strength. The slaked lime admixture can effectively promote the internal Si and Al dissolution and condensation of slag, improve the rate of hydration reaction, and promote the generation of hydration gel C─ (A)─ S─ H, so that the alkali-activated slag matrix is denser and the strength is improved.
    publisherAmerican Society of Civil Engineers
    titleStrength Enhancement Mechanism of Slaked Lime on One-Part AAM Prepared from Sodium Carbonate–Activated Slag
    typeJournal Article
    journal volume36
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17743
    journal fristpage04024343-1
    journal lastpage04024343-12
    page12
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian