YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bond Property Test and Numerical Simulation of the Interface Layer between Asphalt Plug Joint and Pavement

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 008::page 04024209-1
    Author:
    Pengzhen Lu
    ,
    Jiahao Wang
    ,
    Jiarui Ding
    ,
    Ying Wu
    ,
    Kai Ye
    ,
    Liu Yang
    DOI: 10.1061/JMCEE7.MTENG-17712
    Publisher: American Society of Civil Engineers
    Abstract: The development and application of asphalt plug joints have gained popularity due to their unique advantages, such as driving comfort, shock absorption, noise reduction, and convenient management and maintenance. However, these expansion joints are susceptible to damage at the interface due to long-term exposure to traffic loads and environmental factors. Specifically, the interface bond damage between the asphalt plug joint and the pavement directly impacts the service performance and durability of bridge expansion joints. To address these issues effectively, this paper proposes an interface binder with improved bonding performance based on pull-off and oblique shear tests, which is used to enhance the interface cracking resistance of the asphalt plug joint structure. The research focused on the interface layer between Marshall and concrete specimens. A finite-element model of the pull-off specimen, which includes a bilinear cohesive element, was established to simulate the cohesive damage process between the interface layers. The constitutive relationship of the bilinear cohesive element utilizes the bond-slip constitutive curve obtained from the tests. It combines the maximum nominal stress (Maxs criterion) and the linear softening method of energy to simulate the fracture process of the interface layer. The simulation results were compared with the experimental data. Additionally, a parameter design analysis was conducted to study the influence of individual parameter variables on the interface damage behavior. The analysis provided robust data support for simulating the interfacial crack resistance. The results indicate that the simulation analysis aligned well with the experimental data, and the bilinear cohesive model can effectively capture the nonlinear behavior of the interface layer bond-slip. The loading method and the type of binder were found to have a significant impact on the interface bond fracture energy. The results demonstrate the effectiveness of the proposed approach in capturing the nonlinear behavior of the interface layer and provide valuable insights into the influence of different parameters on interface damage behavior.
    • Download: (1.681Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bond Property Test and Numerical Simulation of the Interface Layer between Asphalt Plug Joint and Pavement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299275
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorPengzhen Lu
    contributor authorJiahao Wang
    contributor authorJiarui Ding
    contributor authorYing Wu
    contributor authorKai Ye
    contributor authorLiu Yang
    date accessioned2024-12-24T10:37:54Z
    date available2024-12-24T10:37:54Z
    date copyright8/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-17712.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299275
    description abstractThe development and application of asphalt plug joints have gained popularity due to their unique advantages, such as driving comfort, shock absorption, noise reduction, and convenient management and maintenance. However, these expansion joints are susceptible to damage at the interface due to long-term exposure to traffic loads and environmental factors. Specifically, the interface bond damage between the asphalt plug joint and the pavement directly impacts the service performance and durability of bridge expansion joints. To address these issues effectively, this paper proposes an interface binder with improved bonding performance based on pull-off and oblique shear tests, which is used to enhance the interface cracking resistance of the asphalt plug joint structure. The research focused on the interface layer between Marshall and concrete specimens. A finite-element model of the pull-off specimen, which includes a bilinear cohesive element, was established to simulate the cohesive damage process between the interface layers. The constitutive relationship of the bilinear cohesive element utilizes the bond-slip constitutive curve obtained from the tests. It combines the maximum nominal stress (Maxs criterion) and the linear softening method of energy to simulate the fracture process of the interface layer. The simulation results were compared with the experimental data. Additionally, a parameter design analysis was conducted to study the influence of individual parameter variables on the interface damage behavior. The analysis provided robust data support for simulating the interfacial crack resistance. The results indicate that the simulation analysis aligned well with the experimental data, and the bilinear cohesive model can effectively capture the nonlinear behavior of the interface layer bond-slip. The loading method and the type of binder were found to have a significant impact on the interface bond fracture energy. The results demonstrate the effectiveness of the proposed approach in capturing the nonlinear behavior of the interface layer and provide valuable insights into the influence of different parameters on interface damage behavior.
    publisherAmerican Society of Civil Engineers
    titleBond Property Test and Numerical Simulation of the Interface Layer between Asphalt Plug Joint and Pavement
    typeJournal Article
    journal volume36
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17712
    journal fristpage04024209-1
    journal lastpage04024209-10
    page10
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian