Waste Paint as Admixture for Glass Fiber–Reinforced Concrete Building FaçadesSource: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 010::page 04024340-1DOI: 10.1061/JMCEE7.MTENG-17692Publisher: American Society of Civil Engineers
Abstract: Building façade elements should have aesthetically pleasing geometrical shapes made up of sustainable materials with energy-efficient designs. The low mass-to-high strength ratio of glass fiber–reinforced concrete (GFRC) has the potential to be adopted as a façade material and has been used in the manufacturing of façade elements. The workability of GFRC mixes is comparatively low; therefore, commercial polymer admixtures are used to improve it. The application of commercial polymers may reduce the fire resistance of GFRC mixes due to their easy combustibility. This study investigated the possible application of waste paint to completely replace commercial polymer admixtures in GFRC. It explored the optimum dosage of waste paint to achieve the required strength of a GFRC mix to be used as a façade material. First, characterization of the waste paint was carried out using its rheological properties and solid content, which were compared with commercially available polymer and paint. Subsequently, the effect of different dosages of waste paint (i.e., 0.5%, 1%, and 2% by mass) on the workability and mechanical properties of GFRC mixes (e.g., compressive and flexural strength) was evaluated. Water absorption and porosity were also evaluated. Finally, the combustibility of GFRC mixes with waste paint was evaluated to qualitatively assess fire performance when compared with polymer GFRC mixes. The experimental results demonstrated that the addition of waste paint to the GFRC mixes improved workability. Furthermore, the mixes with a waste paint dosage of less than 1% showed no significant variation in compressive strength compared with the commercial polymer mix. However, the mix with 1% waste paint enhanced flexural strength by 34% whereas a further increase in waste paint content was observed to reduce flexural capacity due to an increase in porosity. Finally, the fire performance of the mixes showed that waste paint is a noncombustible material and can be used as a potential substitute for polymer admixtures in façade applications.
|
Collections
Show full item record
contributor author | Dushan Fernando | |
contributor author | Pathmanathan Rajeev | |
contributor author | Akilesh Ramesh | |
contributor author | Jay Sanjayan | |
date accessioned | 2024-12-24T10:37:48Z | |
date available | 2024-12-24T10:37:48Z | |
date copyright | 10/1/2024 12:00:00 AM | |
date issued | 2024 | |
identifier other | JMCEE7.MTENG-17692.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4299272 | |
description abstract | Building façade elements should have aesthetically pleasing geometrical shapes made up of sustainable materials with energy-efficient designs. The low mass-to-high strength ratio of glass fiber–reinforced concrete (GFRC) has the potential to be adopted as a façade material and has been used in the manufacturing of façade elements. The workability of GFRC mixes is comparatively low; therefore, commercial polymer admixtures are used to improve it. The application of commercial polymers may reduce the fire resistance of GFRC mixes due to their easy combustibility. This study investigated the possible application of waste paint to completely replace commercial polymer admixtures in GFRC. It explored the optimum dosage of waste paint to achieve the required strength of a GFRC mix to be used as a façade material. First, characterization of the waste paint was carried out using its rheological properties and solid content, which were compared with commercially available polymer and paint. Subsequently, the effect of different dosages of waste paint (i.e., 0.5%, 1%, and 2% by mass) on the workability and mechanical properties of GFRC mixes (e.g., compressive and flexural strength) was evaluated. Water absorption and porosity were also evaluated. Finally, the combustibility of GFRC mixes with waste paint was evaluated to qualitatively assess fire performance when compared with polymer GFRC mixes. The experimental results demonstrated that the addition of waste paint to the GFRC mixes improved workability. Furthermore, the mixes with a waste paint dosage of less than 1% showed no significant variation in compressive strength compared with the commercial polymer mix. However, the mix with 1% waste paint enhanced flexural strength by 34% whereas a further increase in waste paint content was observed to reduce flexural capacity due to an increase in porosity. Finally, the fire performance of the mixes showed that waste paint is a noncombustible material and can be used as a potential substitute for polymer admixtures in façade applications. | |
publisher | American Society of Civil Engineers | |
title | Waste Paint as Admixture for Glass Fiber–Reinforced Concrete Building Façades | |
type | Journal Article | |
journal volume | 36 | |
journal issue | 10 | |
journal title | Journal of Materials in Civil Engineering | |
identifier doi | 10.1061/JMCEE7.MTENG-17692 | |
journal fristpage | 04024340-1 | |
journal lastpage | 04024340-10 | |
page | 10 | |
tree | Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 010 | |
contenttype | Fulltext |