YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identifying the Suitability of Warm Mix Asphalt for Reducing the Production Temperatures of Crumb Rubber–Modified Asphalt Mixtures: Economic and Environmental Perspective

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 009::page 04024261-1
    Author:
    Vivek Pratap Wagh
    ,
    Saurabh Kumar
    ,
    Ankit Gupta
    DOI: 10.1061/JMCEE7.MTENG-17546
    Publisher: American Society of Civil Engineers
    Abstract: The higher production temperature and greenhouse gas emissions restrain the use of crumb rubber (CR) obtained from recycled tires in pavement construction. Warm mix asphalt (WMA) technology is a sustainable solution for crumb rubber–modified bitumen (CRMB) as it allows the production of asphalt mixtures at lower temperatures. In addition, WMA lowers fuel consumption and greenhouse gas (GHG) emissions, leading to the cleaner production of asphalt mixtures. The primary objective of the study is to minimize the production temperature of crumb rubber–modified (CRM) binders with the use of WMA technology. This study explores the mixing and compaction temperatures using a workability approach. The study found that the conventional viscous-based methods do not yield appropriate production temperatures for CRM asphalt binders. The workability approach used in this study was able to quantify the mixing and compaction temperatures for different CRM mixture incorporated with WMA technologies. About 4%–13% and 5%–22% reduction in mixing and compaction temperatures, respectively, were obtained for different WMA technologies. Finally, the reduction in GHG and energy consumption were studied for WMA technology at their reduced mixing and compaction temperature. The use of WMA technology reduced the energy consumption by around 4%–12% and GHG emissions by 4%–13% relative to base CRM mixture. The amount of reduction in emission and energy consumption was found to be the function of fuel type, WMA additives, and their respective dosages.
    • Download: (549.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identifying the Suitability of Warm Mix Asphalt for Reducing the Production Temperatures of Crumb Rubber–Modified Asphalt Mixtures: Economic and Environmental Perspective

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299243
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorVivek Pratap Wagh
    contributor authorSaurabh Kumar
    contributor authorAnkit Gupta
    date accessioned2024-12-24T10:36:46Z
    date available2024-12-24T10:36:46Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-17546.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299243
    description abstractThe higher production temperature and greenhouse gas emissions restrain the use of crumb rubber (CR) obtained from recycled tires in pavement construction. Warm mix asphalt (WMA) technology is a sustainable solution for crumb rubber–modified bitumen (CRMB) as it allows the production of asphalt mixtures at lower temperatures. In addition, WMA lowers fuel consumption and greenhouse gas (GHG) emissions, leading to the cleaner production of asphalt mixtures. The primary objective of the study is to minimize the production temperature of crumb rubber–modified (CRM) binders with the use of WMA technology. This study explores the mixing and compaction temperatures using a workability approach. The study found that the conventional viscous-based methods do not yield appropriate production temperatures for CRM asphalt binders. The workability approach used in this study was able to quantify the mixing and compaction temperatures for different CRM mixture incorporated with WMA technologies. About 4%–13% and 5%–22% reduction in mixing and compaction temperatures, respectively, were obtained for different WMA technologies. Finally, the reduction in GHG and energy consumption were studied for WMA technology at their reduced mixing and compaction temperature. The use of WMA technology reduced the energy consumption by around 4%–12% and GHG emissions by 4%–13% relative to base CRM mixture. The amount of reduction in emission and energy consumption was found to be the function of fuel type, WMA additives, and their respective dosages.
    publisherAmerican Society of Civil Engineers
    titleIdentifying the Suitability of Warm Mix Asphalt for Reducing the Production Temperatures of Crumb Rubber–Modified Asphalt Mixtures: Economic and Environmental Perspective
    typeJournal Article
    journal volume36
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17546
    journal fristpage04024261-1
    journal lastpage04024261-10
    page10
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian