YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Synergistic Effect of Early-Strength Agents on the Mechanical Strength of Alkali-Free Liquid Accelerator Mortar

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 007::page 04024178-1
    Author:
    Zhihong Wu
    ,
    Wan Zhang
    ,
    Wang Huang
    ,
    Yuexin Pan
    ,
    Jiawei Wang
    ,
    Huafeng Zhou
    ,
    Zhishun Li
    DOI: 10.1061/JMCEE7.MTENG-17411
    Publisher: American Society of Civil Engineers
    Abstract: As the core admixture of shotcrete, the accelerator promotes the rapid setting of shotcrete. In order to promote the rapid development of strength, the synergistic effect and the synergistic mechanism of early-strength agents [Al(NO3)3 (AN), and Mg(NO3)2 (MN)], and aluminum sulfate liquid accelerator on the strength of mortar were investigated. The aluminum sulfate liquid accelerator used in this paper was named AF. The results show that the 1-day strength of the mortar reached 8.8 and 10.73 MPa when AF was added with 2.4% AN and 1.8% MN, respectively. When AF and 2.4% AN were used, the initial and final setting times of the cement paste were 1 min 32 s and 3 min 50 s, respectively, whereas the AF and a very small amount of MN would prolong the setting time of the paste. The synergistic mechanism of AN/MN and AF is as follows: AF provides a large amount of SO42− and Al3+, which promotes the rapid formation of ettringite (AFt). In addition, NO3− in AN and MN promotes the formation of the AFt phase 3CaO·Al2O3·Ca(NO3)2·XH2O (NO3-AFt). Compared with AN, Mg2+ dissolved by MN will first precipitate Mg(OH)2 with OH−, providing crystal nuclei for the hydration system and accelerating the hydration of C3S. It is concluded that AF and MN have a better synergistic effect on improving early strength.
    • Download: (3.945Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Synergistic Effect of Early-Strength Agents on the Mechanical Strength of Alkali-Free Liquid Accelerator Mortar

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299221
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZhihong Wu
    contributor authorWan Zhang
    contributor authorWang Huang
    contributor authorYuexin Pan
    contributor authorJiawei Wang
    contributor authorHuafeng Zhou
    contributor authorZhishun Li
    date accessioned2024-12-24T10:36:05Z
    date available2024-12-24T10:36:05Z
    date copyright7/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-17411.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299221
    description abstractAs the core admixture of shotcrete, the accelerator promotes the rapid setting of shotcrete. In order to promote the rapid development of strength, the synergistic effect and the synergistic mechanism of early-strength agents [Al(NO3)3 (AN), and Mg(NO3)2 (MN)], and aluminum sulfate liquid accelerator on the strength of mortar were investigated. The aluminum sulfate liquid accelerator used in this paper was named AF. The results show that the 1-day strength of the mortar reached 8.8 and 10.73 MPa when AF was added with 2.4% AN and 1.8% MN, respectively. When AF and 2.4% AN were used, the initial and final setting times of the cement paste were 1 min 32 s and 3 min 50 s, respectively, whereas the AF and a very small amount of MN would prolong the setting time of the paste. The synergistic mechanism of AN/MN and AF is as follows: AF provides a large amount of SO42− and Al3+, which promotes the rapid formation of ettringite (AFt). In addition, NO3− in AN and MN promotes the formation of the AFt phase 3CaO·Al2O3·Ca(NO3)2·XH2O (NO3-AFt). Compared with AN, Mg2+ dissolved by MN will first precipitate Mg(OH)2 with OH−, providing crystal nuclei for the hydration system and accelerating the hydration of C3S. It is concluded that AF and MN have a better synergistic effect on improving early strength.
    publisherAmerican Society of Civil Engineers
    titleSynergistic Effect of Early-Strength Agents on the Mechanical Strength of Alkali-Free Liquid Accelerator Mortar
    typeJournal Article
    journal volume36
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17411
    journal fristpage04024178-1
    journal lastpage04024178-12
    page12
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian