YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Properties of Piles Formed by Microbially Induced Carbonate Precipitation: Experimental Investigation and Numerical Simulation

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 009::page 04024287-1
    Author:
    Danyi Shen
    ,
    Jinzheng Sun
    ,
    Zuoyong Li
    ,
    Zhichao Song
    ,
    Chuangzhou Wu
    DOI: 10.1061/JMCEE7.MTENG-17164
    Publisher: American Society of Civil Engineers
    Abstract: Microbially induced carbonate precipitation (MICP) utilizing a urease active bioslurry is an ecofriendly method that can improve soil strength. However, the micromechanisms, such as ion diffusion, production rate of CaCO3, porosity, and permeability of pile reinforced by bioslurry, require further investigation. In this study, both biopile model tests and a coupled fluid-flow, solute transport and biochemical reactive model were conducted to analyze the mechanical property and biocementation mechanism of pile formed by urease active bioslurry. Results showed that the simulated CaCO3 content along the biopile length after 120 h grouting was close to test results. The UCS of the biopile decreased from 3.44 MPa to 0.88 MPa and the CaCO3 content decreased from 13.5% to 9.1% with increasing depth. The largest reduction in CaCO3 content was observed in the middle part of the biopile as the CaCO3 crystals in the upper part hindered the downward transport of the cementation solution. The morphology of CaCO3 crystals was influenced by cementation solution concentration, as evidenced by the predominance of spherical vaterite crystals in the upper part of the biopile and rhomboidal calcite crystals in the middle and lower parts. During the grouting process, the concentration of calcium ions and urea decreased, while the ammonium ion levels increased with depth due to the utilization of calcium ions and urea for CaCO3 precipitation and ammonium ion production. The production rate of CaCO3 first increased rapidly to reach a peak value and then decreased. The porosity and permeability demonstrated both linear and nonlinear decreasing trends as the CaCO3 concentration increased. The largest reduction in porosity and permeability, reaching 20% and 58% in the biopile top.
    • Download: (3.550Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Properties of Piles Formed by Microbially Induced Carbonate Precipitation: Experimental Investigation and Numerical Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299187
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorDanyi Shen
    contributor authorJinzheng Sun
    contributor authorZuoyong Li
    contributor authorZhichao Song
    contributor authorChuangzhou Wu
    date accessioned2024-12-24T10:34:51Z
    date available2024-12-24T10:34:51Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-17164.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299187
    description abstractMicrobially induced carbonate precipitation (MICP) utilizing a urease active bioslurry is an ecofriendly method that can improve soil strength. However, the micromechanisms, such as ion diffusion, production rate of CaCO3, porosity, and permeability of pile reinforced by bioslurry, require further investigation. In this study, both biopile model tests and a coupled fluid-flow, solute transport and biochemical reactive model were conducted to analyze the mechanical property and biocementation mechanism of pile formed by urease active bioslurry. Results showed that the simulated CaCO3 content along the biopile length after 120 h grouting was close to test results. The UCS of the biopile decreased from 3.44 MPa to 0.88 MPa and the CaCO3 content decreased from 13.5% to 9.1% with increasing depth. The largest reduction in CaCO3 content was observed in the middle part of the biopile as the CaCO3 crystals in the upper part hindered the downward transport of the cementation solution. The morphology of CaCO3 crystals was influenced by cementation solution concentration, as evidenced by the predominance of spherical vaterite crystals in the upper part of the biopile and rhomboidal calcite crystals in the middle and lower parts. During the grouting process, the concentration of calcium ions and urea decreased, while the ammonium ion levels increased with depth due to the utilization of calcium ions and urea for CaCO3 precipitation and ammonium ion production. The production rate of CaCO3 first increased rapidly to reach a peak value and then decreased. The porosity and permeability demonstrated both linear and nonlinear decreasing trends as the CaCO3 concentration increased. The largest reduction in porosity and permeability, reaching 20% and 58% in the biopile top.
    publisherAmerican Society of Civil Engineers
    titleMechanical Properties of Piles Formed by Microbially Induced Carbonate Precipitation: Experimental Investigation and Numerical Simulation
    typeJournal Article
    journal volume36
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17164
    journal fristpage04024287-1
    journal lastpage04024287-12
    page12
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian