YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Road Performance of Asphalt Mixture Modified with Liquid Rubber Derived from Crumb Rubber Using Olefin Metathesis

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 010::page 04024314-1
    Author:
    Haiqi He
    ,
    Yi Wu
    ,
    Rui Li
    ,
    Guojing Huang
    ,
    Baowen Xie
    ,
    Jianzhong Pei
    DOI: 10.1061/JMCEE7.MTENG-17144
    Publisher: American Society of Civil Engineers
    Abstract: Liquid rubber (LR) has been proven to be a valuable asphalt modifier capable of addressing the existing deficiencies associated with crumb rubber–modified asphalt (CRMA), including poor workability and storage stability. Therefore, an accessible preparation method based on olefin metathesis was explored to produce optimal LR from crumb rubber (CR) in the laboratory. This research established the optimal laboratory preparation conditions for LR and investigated the performance of liquid rubber–modified asphalt (LRMA) mixture when used in pavement. A total of 32 LR samples were generated by olefin metathesis and physical swelling under various catalytic and swelling conditions. The physical properties, viscosity, and storage ability of LRMA were evaluated to select the optimal preparation parameters for LR. A comprehensive analysis was performed to compare the physicochemical characteristics of LR and the original CR through microscopic examinations with scanning electron microscopy (SEM), Fourier-transform infrared spectrometry (FTIR), and gel permeation chromatography (GPC). An in-depth evaluation assessed the stability at high temperatures, the properties at low temperatures, and the moisture stability of LRMA and CRMA mixtures. Experimental results showed that the optimal laboratory preparation conditions for LR were a catalyst dosage between 3‰ and 5‰, a catalytic duration of 48 h, a swelling temperature of 160°C, and a swelling time of 8 h. Moreover, LR possessed a smooth surface without rubber particles. The molecular weight and distribution of LR were considerably reduced compared with those of CR after olefin metathesis and physical swelling. The introduction of LR significantly enhanced the cracking resistance of the base asphalt mixture. However, the enhancement effect of LR on the base asphalt mixture to resist high-temperature rutting and moisture damage was inferior to that of CR.
    • Download: (2.716Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Road Performance of Asphalt Mixture Modified with Liquid Rubber Derived from Crumb Rubber Using Olefin Metathesis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299185
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorHaiqi He
    contributor authorYi Wu
    contributor authorRui Li
    contributor authorGuojing Huang
    contributor authorBaowen Xie
    contributor authorJianzhong Pei
    date accessioned2024-12-24T10:34:48Z
    date available2024-12-24T10:34:48Z
    date copyright10/1/2024 12:00:00 AM
    date issued2024
    identifier otherJMCEE7.MTENG-17144.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299185
    description abstractLiquid rubber (LR) has been proven to be a valuable asphalt modifier capable of addressing the existing deficiencies associated with crumb rubber–modified asphalt (CRMA), including poor workability and storage stability. Therefore, an accessible preparation method based on olefin metathesis was explored to produce optimal LR from crumb rubber (CR) in the laboratory. This research established the optimal laboratory preparation conditions for LR and investigated the performance of liquid rubber–modified asphalt (LRMA) mixture when used in pavement. A total of 32 LR samples were generated by olefin metathesis and physical swelling under various catalytic and swelling conditions. The physical properties, viscosity, and storage ability of LRMA were evaluated to select the optimal preparation parameters for LR. A comprehensive analysis was performed to compare the physicochemical characteristics of LR and the original CR through microscopic examinations with scanning electron microscopy (SEM), Fourier-transform infrared spectrometry (FTIR), and gel permeation chromatography (GPC). An in-depth evaluation assessed the stability at high temperatures, the properties at low temperatures, and the moisture stability of LRMA and CRMA mixtures. Experimental results showed that the optimal laboratory preparation conditions for LR were a catalyst dosage between 3‰ and 5‰, a catalytic duration of 48 h, a swelling temperature of 160°C, and a swelling time of 8 h. Moreover, LR possessed a smooth surface without rubber particles. The molecular weight and distribution of LR were considerably reduced compared with those of CR after olefin metathesis and physical swelling. The introduction of LR significantly enhanced the cracking resistance of the base asphalt mixture. However, the enhancement effect of LR on the base asphalt mixture to resist high-temperature rutting and moisture damage was inferior to that of CR.
    publisherAmerican Society of Civil Engineers
    titleRoad Performance of Asphalt Mixture Modified with Liquid Rubber Derived from Crumb Rubber Using Olefin Metathesis
    typeJournal Article
    journal volume36
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17144
    journal fristpage04024314-1
    journal lastpage04024314-13
    page13
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian