YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Legal Affairs and Dispute Resolution in Engineering and Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Legal Affairs and Dispute Resolution in Engineering and Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Automated Risk Analysis for Construction Contracts Using Neural Networks

    Source: Journal of Legal Affairs and Dispute Resolution in Engineering and Construction:;2024:;Volume ( 016 ):;issue: 004::page 04524023-1
    Author:
    Khaled Hamdy
    ,
    Ibrahim AbdelRasheed
    ,
    Yasmeen A. S. Essawy
    ,
    Ahmed Gamal ElDeen
    DOI: 10.1061/JLADAH.LADR-1149
    Publisher: American Society of Civil Engineers
    Abstract: Artificial intelligence (AI) application has been recently utilized in various commercial trades. In the past 20 years, researchers made various attempts in applying AI as a supporting tool in construction management, unfortunately, most of these attempts are neither mature enough nor well developed, due to the sophisticated nature of the construction industry considering its diversified fields. Overviewing construction projects and shedding light on the construction management stages, it can be clear, identification, categorization, and impact assessment of contractual risks consumes extensive amounts of effort and time during the estimation process in the tendering stage. This process has proven to be very challenging and risky due to the tight duration usually allocated for such crucial activities. Consequently, hurrying the aforesaid bidders most likely leads to inaccurate pricing leading to unavoidable legal disputes threatening construction projects’ success. Therefore, developing an AI model for bidders to support them in proper and accurate pricing, and the early stage enhancement of the risk management, in addition to a potential reduction in the possible disputes that might arise between contracting parties at a later stage. This research presents a supervised machine learning model programmed using Python language, adopting artificial neural networks (ANN), established, and trained to identify the risky clauses, their level of severity, and their expected impact (time, cost, or both). The collected data set extracted from real five construction contracts generating 486 clauses; these clauses were analyzed by eight domain experts (through two-stage interviews) to provide risk ranking and its probable impact through a predetermined question. A preprocessing stage is conducted for utilizing the collected interview replies in a suitable format for the ANN model. The python-based model uses transformers to predict clauses’ risk rank and their probable impact. The data set is split into 80% training and 20% validation, results show high validation percentages for risk impact and risk ranking.
    • Download: (2.593Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Automated Risk Analysis for Construction Contracts Using Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299127
    Collections
    • Journal of Legal Affairs and Dispute Resolution in Engineering and Construction

    Show full item record

    contributor authorKhaled Hamdy
    contributor authorIbrahim AbdelRasheed
    contributor authorYasmeen A. S. Essawy
    contributor authorAhmed Gamal ElDeen
    date accessioned2024-12-24T10:32:49Z
    date available2024-12-24T10:32:49Z
    date copyright11/1/2024 12:00:00 AM
    date issued2024
    identifier otherJLADAH.LADR-1149.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299127
    description abstractArtificial intelligence (AI) application has been recently utilized in various commercial trades. In the past 20 years, researchers made various attempts in applying AI as a supporting tool in construction management, unfortunately, most of these attempts are neither mature enough nor well developed, due to the sophisticated nature of the construction industry considering its diversified fields. Overviewing construction projects and shedding light on the construction management stages, it can be clear, identification, categorization, and impact assessment of contractual risks consumes extensive amounts of effort and time during the estimation process in the tendering stage. This process has proven to be very challenging and risky due to the tight duration usually allocated for such crucial activities. Consequently, hurrying the aforesaid bidders most likely leads to inaccurate pricing leading to unavoidable legal disputes threatening construction projects’ success. Therefore, developing an AI model for bidders to support them in proper and accurate pricing, and the early stage enhancement of the risk management, in addition to a potential reduction in the possible disputes that might arise between contracting parties at a later stage. This research presents a supervised machine learning model programmed using Python language, adopting artificial neural networks (ANN), established, and trained to identify the risky clauses, their level of severity, and their expected impact (time, cost, or both). The collected data set extracted from real five construction contracts generating 486 clauses; these clauses were analyzed by eight domain experts (through two-stage interviews) to provide risk ranking and its probable impact through a predetermined question. A preprocessing stage is conducted for utilizing the collected interview replies in a suitable format for the ANN model. The python-based model uses transformers to predict clauses’ risk rank and their probable impact. The data set is split into 80% training and 20% validation, results show high validation percentages for risk impact and risk ranking.
    publisherAmerican Society of Civil Engineers
    titleAutomated Risk Analysis for Construction Contracts Using Neural Networks
    typeJournal Article
    journal volume16
    journal issue4
    journal titleJournal of Legal Affairs and Dispute Resolution in Engineering and Construction
    identifier doi10.1061/JLADAH.LADR-1149
    journal fristpage04524023-1
    journal lastpage04524023-12
    page12
    treeJournal of Legal Affairs and Dispute Resolution in Engineering and Construction:;2024:;Volume ( 016 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian