YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Deep Infiltration Model to Quantify Water Use Efficiency of Center-Pivot Irrigated Alfalfa

    Source: Journal of Irrigation and Drainage Engineering:;2024:;Volume ( 150 ):;issue: 005::page 04024021-1
    Author:
    Bailey Liu
    ,
    Erin Brooks
    ,
    Abdelmoneim Z. Mohamed
    ,
    Jason Kelley
    DOI: 10.1061/JIDEDH.IRENG-10322
    Publisher: American Society of Civil Engineers
    Abstract: Water shortages in arid regions present challenges in administering water and requires robust water accounting. In southeast Idaho, the Eastern Snake Plain Aquifer (ESPA) supports an important agricultural sector. Due to connectivity between surface and groundwater in the ESPA, quantifying aquifer recharge is also important. Historically, leaching from excess surface irrigation supported incidental recharge to the ESPA, but more efficient irrigation techniques reduced incidental recharge. This paper outlines a deep infiltration (DI) model developed to evaluate infiltration losses from different irrigation practices and soil types. Twelve scenarios were created to simulate an alfalfa growing season under varying climatic and soil conditions. Under some scenarios, modeled infiltration losses increased by 10%–20% coincident with increased application efficiency. The concept of consumptive use efficiency (CUE) is introduced to quantify the proportion of irrigation beneficially used by crops. The model results show that CUE decreased with increasing application efficiency and suggest CUE could be improved 8%–10% for well-drained loamy soils; clay loam soils showed little opportunity for improvement. The results indicate that more efficient irrigation application techniques may increase DI loss if irrigation schedules do not explicitly include soil water storage for the entire rooting zone. These results indicate that in conditions where losses from DI can be reduced, improving water use efficiency depends on precision irrigation scheduling linked to infiltration rates. This model provides a practical method by which infiltration losses from irrigated lands can be estimated. Considering site-specific infiltration would facilitate and prioritize investments meant to improve water use efficiency. Irrigation in arid regions usually entails some degree of inefficiency, partly due to water lost through deep percolation. Although some drainage loss occurs under most real-world conditions, it is difficult to measure actual loss. A lack of real information hampers precise estimates and increases uncertainty about actual conveyance and irrigation efficiency. On the other hand, soil infiltration models can utilize existing soil survey maps and guide prioritization and incentives to encourage best practices. This study demonstrates a straightforward application of a soil water drainage model combined with regional soil maps, as could be implemented by water managers. The model was calibrated using observations of crop water use, irrigation application, and soil water content from an irrigated alfalfa field. The calibrated model was then used to describe potential drainage rates from common soil types and weather conditions in southeastern Idaho. The model results indicate that efficient irrigation practices may be best suited to well drained soils, and fewer benefits were observed in poorly drained soils. Even a relatively simple application of this model highlights conditions that are best suited to particular efficiency strategies and help prioritize limited resources for developing best practices for water conservation.
    • Download: (1.491Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Deep Infiltration Model to Quantify Water Use Efficiency of Center-Pivot Irrigated Alfalfa

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299088
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorBailey Liu
    contributor authorErin Brooks
    contributor authorAbdelmoneim Z. Mohamed
    contributor authorJason Kelley
    date accessioned2024-12-24T10:31:45Z
    date available2024-12-24T10:31:45Z
    date copyright10/1/2024 12:00:00 AM
    date issued2024
    identifier otherJIDEDH.IRENG-10322.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299088
    description abstractWater shortages in arid regions present challenges in administering water and requires robust water accounting. In southeast Idaho, the Eastern Snake Plain Aquifer (ESPA) supports an important agricultural sector. Due to connectivity between surface and groundwater in the ESPA, quantifying aquifer recharge is also important. Historically, leaching from excess surface irrigation supported incidental recharge to the ESPA, but more efficient irrigation techniques reduced incidental recharge. This paper outlines a deep infiltration (DI) model developed to evaluate infiltration losses from different irrigation practices and soil types. Twelve scenarios were created to simulate an alfalfa growing season under varying climatic and soil conditions. Under some scenarios, modeled infiltration losses increased by 10%–20% coincident with increased application efficiency. The concept of consumptive use efficiency (CUE) is introduced to quantify the proportion of irrigation beneficially used by crops. The model results show that CUE decreased with increasing application efficiency and suggest CUE could be improved 8%–10% for well-drained loamy soils; clay loam soils showed little opportunity for improvement. The results indicate that more efficient irrigation application techniques may increase DI loss if irrigation schedules do not explicitly include soil water storage for the entire rooting zone. These results indicate that in conditions where losses from DI can be reduced, improving water use efficiency depends on precision irrigation scheduling linked to infiltration rates. This model provides a practical method by which infiltration losses from irrigated lands can be estimated. Considering site-specific infiltration would facilitate and prioritize investments meant to improve water use efficiency. Irrigation in arid regions usually entails some degree of inefficiency, partly due to water lost through deep percolation. Although some drainage loss occurs under most real-world conditions, it is difficult to measure actual loss. A lack of real information hampers precise estimates and increases uncertainty about actual conveyance and irrigation efficiency. On the other hand, soil infiltration models can utilize existing soil survey maps and guide prioritization and incentives to encourage best practices. This study demonstrates a straightforward application of a soil water drainage model combined with regional soil maps, as could be implemented by water managers. The model was calibrated using observations of crop water use, irrigation application, and soil water content from an irrigated alfalfa field. The calibrated model was then used to describe potential drainage rates from common soil types and weather conditions in southeastern Idaho. The model results indicate that efficient irrigation practices may be best suited to well drained soils, and fewer benefits were observed in poorly drained soils. Even a relatively simple application of this model highlights conditions that are best suited to particular efficiency strategies and help prioritize limited resources for developing best practices for water conservation.
    publisherAmerican Society of Civil Engineers
    titleDeep Infiltration Model to Quantify Water Use Efficiency of Center-Pivot Irrigated Alfalfa
    typeJournal Article
    journal volume150
    journal issue5
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/JIDEDH.IRENG-10322
    journal fristpage04024021-1
    journal lastpage04024021-13
    page13
    treeJournal of Irrigation and Drainage Engineering:;2024:;Volume ( 150 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian