YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Test of Trapezoidal Hyetograph Method with Laboratory Watershed Data

    Source: Journal of Hydrologic Engineering:;2024:;Volume ( 029 ):;issue: 004::page 04024019-1
    Author:
    Junke Guo
    ,
    Liqin Qu
    ,
    Jun An
    DOI: 10.1061/JHYEFF.HEENG-6033
    Publisher: American Society of Civil Engineers
    Abstract: Trapezoidal hyetographs are common in both real-world small watersheds and laboratory watersheds because (1) real-world hyetographs are often represented by line charts that can be divided into multiple trapezoidal rainfall pulses, and (2) laboratory rainfalls are usually generated by rainfall simulators uniformly in space and time, but when considering infiltration loss, the excess hyetographs may be approximated to be trapezoidal. Particularly, a trapezoidal hyetograph can be converted to a runoff hydrograph simply, accurately, and theoretically based on the general unit hydrograph model. The objective of this research is thus to test the theoretical trapezoidal hyetograph method with laboratory watershed rainfall-runoff data. The results showed that this theoretical method agrees very well with laboratory watershed data, with determination coefficients r2>0.93 for both constant and variable (incident) rainfall intensities. Therefore, the trapezoidal hyetograph method can be used to convert any line-chart hyetograph to a runoff hydrograph analytically, where rectangular and triangular hyetographs are special cases. Finally, the trapezoidal hyetograph method for a constant excess rainfall intensity (or the general rational method) is comparable to the classic kinematic wave theory for overland flow, but it is much simpler in applications.
    • Download: (1.019Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Test of Trapezoidal Hyetograph Method with Laboratory Watershed Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299041
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorJunke Guo
    contributor authorLiqin Qu
    contributor authorJun An
    date accessioned2024-12-24T10:30:13Z
    date available2024-12-24T10:30:13Z
    date copyright8/1/2024 12:00:00 AM
    date issued2024
    identifier otherJHYEFF.HEENG-6033.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299041
    description abstractTrapezoidal hyetographs are common in both real-world small watersheds and laboratory watersheds because (1) real-world hyetographs are often represented by line charts that can be divided into multiple trapezoidal rainfall pulses, and (2) laboratory rainfalls are usually generated by rainfall simulators uniformly in space and time, but when considering infiltration loss, the excess hyetographs may be approximated to be trapezoidal. Particularly, a trapezoidal hyetograph can be converted to a runoff hydrograph simply, accurately, and theoretically based on the general unit hydrograph model. The objective of this research is thus to test the theoretical trapezoidal hyetograph method with laboratory watershed rainfall-runoff data. The results showed that this theoretical method agrees very well with laboratory watershed data, with determination coefficients r2>0.93 for both constant and variable (incident) rainfall intensities. Therefore, the trapezoidal hyetograph method can be used to convert any line-chart hyetograph to a runoff hydrograph analytically, where rectangular and triangular hyetographs are special cases. Finally, the trapezoidal hyetograph method for a constant excess rainfall intensity (or the general rational method) is comparable to the classic kinematic wave theory for overland flow, but it is much simpler in applications.
    publisherAmerican Society of Civil Engineers
    titleTest of Trapezoidal Hyetograph Method with Laboratory Watershed Data
    typeJournal Article
    journal volume29
    journal issue4
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/JHYEFF.HEENG-6033
    journal fristpage04024019-1
    journal lastpage04024019-10
    page10
    treeJournal of Hydrologic Engineering:;2024:;Volume ( 029 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian