YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantitative Risk Assessment of Seismically Loaded Slopes in Spatially Variable Soils with Depth-Dependent Strength

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 007::page 04024113-1
    Author:
    Kang Liao
    ,
    Yiping Wu
    ,
    Fasheng Miao
    ,
    Yutao Pan
    ,
    Michael Beer
    DOI: 10.1061/IJGNAI.GMENG-9001
    Publisher: American Society of Civil Engineers
    Abstract: Risk assessment of seismically loaded slopes is often a prerequisite for guiding decision-making and mitigation, which could be more difficult to quantify when taking the spatial variability of material properties into account. In this study, a random finite-element limit analysis (RFELA) is developed to assess the risk of a seismically loaded slope where the undrained shear strength of soils is spatially variable with depth. The nonstationary random field is first introduced to model the linearly increasing undrained shear strength. Then, finite-element limit analysis (FELA) is employed to evaluate the seismic stability and consequence, in which the seismic loading is characterized by the pseudostatic approach with a range of horizontal seismic coefficients. Finally, the quantitative risk assessment is conducted based on Monte Carlo simulations. The results show that using the nonstationary random field to model the soil spatial variability could significantly reduce the risk compared with the stationary random field, which matches better with the site-specific data. The risk of the slope failure increases with the increase in the seismic coefficient. In addition, the effects of the correlation structure of the undrained shear strength, which includes the coefficient of variation (COV) and autocorrelation distance, on the risk assessment are studied by parametric analyses.
    • Download: (1.374Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantitative Risk Assessment of Seismically Loaded Slopes in Spatially Variable Soils with Depth-Dependent Strength

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299034
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorKang Liao
    contributor authorYiping Wu
    contributor authorFasheng Miao
    contributor authorYutao Pan
    contributor authorMichael Beer
    date accessioned2024-12-24T10:30:00Z
    date available2024-12-24T10:30:00Z
    date copyright7/1/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-9001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299034
    description abstractRisk assessment of seismically loaded slopes is often a prerequisite for guiding decision-making and mitigation, which could be more difficult to quantify when taking the spatial variability of material properties into account. In this study, a random finite-element limit analysis (RFELA) is developed to assess the risk of a seismically loaded slope where the undrained shear strength of soils is spatially variable with depth. The nonstationary random field is first introduced to model the linearly increasing undrained shear strength. Then, finite-element limit analysis (FELA) is employed to evaluate the seismic stability and consequence, in which the seismic loading is characterized by the pseudostatic approach with a range of horizontal seismic coefficients. Finally, the quantitative risk assessment is conducted based on Monte Carlo simulations. The results show that using the nonstationary random field to model the soil spatial variability could significantly reduce the risk compared with the stationary random field, which matches better with the site-specific data. The risk of the slope failure increases with the increase in the seismic coefficient. In addition, the effects of the correlation structure of the undrained shear strength, which includes the coefficient of variation (COV) and autocorrelation distance, on the risk assessment are studied by parametric analyses.
    publisherAmerican Society of Civil Engineers
    titleQuantitative Risk Assessment of Seismically Loaded Slopes in Spatially Variable Soils with Depth-Dependent Strength
    typeJournal Article
    journal volume24
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9001
    journal fristpage04024113-1
    journal lastpage04024113-10
    page10
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian