YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Sustainable Reinforcement Method for Recycled Road Subgrade Demolition Waste as Road Bases Using Waterborne Polyurethane and Fiber

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 008::page 04024173-1
    Author:
    Wei Wang
    ,
    Beifeng Lv
    ,
    Yanting Wu
    ,
    Shaoyun Pu
    ,
    Ping Jiang
    ,
    Na Li
    DOI: 10.1061/IJGNAI.GMENG-8586
    Publisher: American Society of Civil Engineers
    Abstract: The discard of recycled road demolition waste (RDW) leads to natural resource waste and environmental problems. The RDW is reused as road base, which is a sustainable application and promising construction technology with good environmental benefits and economic value. The performance of road base with RDW depends on the compressive strength, splitting strength, and ductility. However, owing to the poor mechanical properties, the RDW can only be reused after being treated. The traditional treatment method of waste as road base is to enhance mechanical performance using cement. However, when cement is used as a stabilizer, the road base cracks very easily, thereby damaging the pavement. Therefore, in this article, a new reutilization method of RDW as road base is proposed. The waterborne polyurethane (PU) was proposed to improve the strength of RDW, and basalt fiber (BF), polypropylene fiber (PF), and carbon fiber (CF) were used to improve the ductility of PU-stabilized RDW. The related mechanical behavior was investigated by unconfined compressive strength and splitting strength tests. Meanwhile, the mechanism of RDW enhanced by PU and PU + CF/PF/BF was revealed using scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared reflection (FTIR) tests. The results showed that the PU could improve the strength of RDW. When BF, PF, and CF were added, the compressive strength, residual strength, splitting strength, failure strain, and ductility were further enhanced. When the fiber content was 6%, a maximum compressive strength was obtained, and the PF had the best improvement effect on the mechanical properties of PU-stabilized RDW. When the PF content was 0.6% and 0.8%, the 7-days compressive strength could meet the class II standard (3.0 MPa) of road subbase for heavy traffic expressways. The failure strain increased with the compressive strength increasing. The mechanical performance improvement effect of PU and PU + CF/PF/BF on RDW came from the bonding effect of PU, and the bridging effect and reinforcement effect of fiber. This study provides a favorable way for the recycling of RDW, which is conducive to the sustainable development of environment and the conservation and utilization of energy.
    • Download: (15.54Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Sustainable Reinforcement Method for Recycled Road Subgrade Demolition Waste as Road Bases Using Waterborne Polyurethane and Fiber

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298934
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorWei Wang
    contributor authorBeifeng Lv
    contributor authorYanting Wu
    contributor authorShaoyun Pu
    contributor authorPing Jiang
    contributor authorNa Li
    date accessioned2024-12-24T10:26:43Z
    date available2024-12-24T10:26:43Z
    date copyright8/1/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-8586.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298934
    description abstractThe discard of recycled road demolition waste (RDW) leads to natural resource waste and environmental problems. The RDW is reused as road base, which is a sustainable application and promising construction technology with good environmental benefits and economic value. The performance of road base with RDW depends on the compressive strength, splitting strength, and ductility. However, owing to the poor mechanical properties, the RDW can only be reused after being treated. The traditional treatment method of waste as road base is to enhance mechanical performance using cement. However, when cement is used as a stabilizer, the road base cracks very easily, thereby damaging the pavement. Therefore, in this article, a new reutilization method of RDW as road base is proposed. The waterborne polyurethane (PU) was proposed to improve the strength of RDW, and basalt fiber (BF), polypropylene fiber (PF), and carbon fiber (CF) were used to improve the ductility of PU-stabilized RDW. The related mechanical behavior was investigated by unconfined compressive strength and splitting strength tests. Meanwhile, the mechanism of RDW enhanced by PU and PU + CF/PF/BF was revealed using scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared reflection (FTIR) tests. The results showed that the PU could improve the strength of RDW. When BF, PF, and CF were added, the compressive strength, residual strength, splitting strength, failure strain, and ductility were further enhanced. When the fiber content was 6%, a maximum compressive strength was obtained, and the PF had the best improvement effect on the mechanical properties of PU-stabilized RDW. When the PF content was 0.6% and 0.8%, the 7-days compressive strength could meet the class II standard (3.0 MPa) of road subbase for heavy traffic expressways. The failure strain increased with the compressive strength increasing. The mechanical performance improvement effect of PU and PU + CF/PF/BF on RDW came from the bonding effect of PU, and the bridging effect and reinforcement effect of fiber. This study provides a favorable way for the recycling of RDW, which is conducive to the sustainable development of environment and the conservation and utilization of energy.
    publisherAmerican Society of Civil Engineers
    titleA Sustainable Reinforcement Method for Recycled Road Subgrade Demolition Waste as Road Bases Using Waterborne Polyurethane and Fiber
    typeJournal Article
    journal volume24
    journal issue8
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-8586
    journal fristpage04024173-1
    journal lastpage04024173-13
    page13
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian