YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reliability-Based Topology Optimization for Optimal Layout of Active Controllers of Structures under Random Excitation

    Source: Journal of Engineering Mechanics:;2024:;Volume ( 150 ):;issue: 006::page 04024030-1
    Author:
    Wenqian Yu
    ,
    Cheng Su
    ,
    Houzuo Guo
    DOI: 10.1061/JENMDT.EMENG-7563
    Publisher: American Society of Civil Engineers
    Abstract: Topology optimization is an appealing technique for optimal layout of active controllers of structures. However, the existing methods are mainly restricted to deterministic excitations, and the optimal control law involved is determined by use of the classical optimal control (COC) method, in which the sensitivities of the gain matrix with respect to the design variables need to be determined by solving the Riccati sensitivity equation numerically. In this study, a reliability-based topology optimization framework is proposed for optimal layout of active controllers of structures under nonstationary random excitations. The optimization problem is formulated as the minimization of the failure probability of the structure subjected to a specified maximum number of controllers. To avoid solving the Riccati equation, an explicit optimal control (EOC) method is first employed to derive the closed-form optimal control law in terms of the position parameters of controllers. The statistical moments of the optimal control forces and structural responses under random excitations are then obtained explicitly by the operation rules of moments, and the first-passage dynamic reliability of the structure can be formulated using the level-crossing theory. On this basis, the sensitivities of the structural failure probability with respect to the position parameters of controllers can be derived analytically by the direct differential method. Finally, the explicit formulations of the response statistics and the relevant sensitivities are incorporated into a gradient-based method of moving asymptotes (MMA) for topology optimization of the layout of controllers in conjunction with the solid isotropic material with penalization (SIMP) technique. Two numerical examples are presented to demonstrate the feasibility of the proposed topology optimization framework.
    • Download: (1.577Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reliability-Based Topology Optimization for Optimal Layout of Active Controllers of Structures under Random Excitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298879
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorWenqian Yu
    contributor authorCheng Su
    contributor authorHouzuo Guo
    date accessioned2024-12-24T10:25:06Z
    date available2024-12-24T10:25:06Z
    date copyright6/1/2024 12:00:00 AM
    date issued2024
    identifier otherJENMDT.EMENG-7563.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298879
    description abstractTopology optimization is an appealing technique for optimal layout of active controllers of structures. However, the existing methods are mainly restricted to deterministic excitations, and the optimal control law involved is determined by use of the classical optimal control (COC) method, in which the sensitivities of the gain matrix with respect to the design variables need to be determined by solving the Riccati sensitivity equation numerically. In this study, a reliability-based topology optimization framework is proposed for optimal layout of active controllers of structures under nonstationary random excitations. The optimization problem is formulated as the minimization of the failure probability of the structure subjected to a specified maximum number of controllers. To avoid solving the Riccati equation, an explicit optimal control (EOC) method is first employed to derive the closed-form optimal control law in terms of the position parameters of controllers. The statistical moments of the optimal control forces and structural responses under random excitations are then obtained explicitly by the operation rules of moments, and the first-passage dynamic reliability of the structure can be formulated using the level-crossing theory. On this basis, the sensitivities of the structural failure probability with respect to the position parameters of controllers can be derived analytically by the direct differential method. Finally, the explicit formulations of the response statistics and the relevant sensitivities are incorporated into a gradient-based method of moving asymptotes (MMA) for topology optimization of the layout of controllers in conjunction with the solid isotropic material with penalization (SIMP) technique. Two numerical examples are presented to demonstrate the feasibility of the proposed topology optimization framework.
    publisherAmerican Society of Civil Engineers
    titleReliability-Based Topology Optimization for Optimal Layout of Active Controllers of Structures under Random Excitation
    typeJournal Article
    journal volume150
    journal issue6
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/JENMDT.EMENG-7563
    journal fristpage04024030-1
    journal lastpage04024030-14
    page14
    treeJournal of Engineering Mechanics:;2024:;Volume ( 150 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian