YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Cold Regions Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Cold Regions Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Mechanical Properties and Damage Evolution Behaviors of Ice-Rich Frozen Soil with Various Initial Moisture Contents

    Source: Journal of Cold Regions Engineering:;2024:;Volume ( 038 ):;issue: 004::page 04024026-1
    Author:
    Huasong Xiang
    ,
    Dongdong Ma
    ,
    Xinpeng Wang
    ,
    Zhiwei Zhou
    DOI: 10.1061/JCRGEI.CRENG-789
    Publisher: American Society of Civil Engineers
    Abstract: To investigate the dynamic mechanical response and damage evolution behavior of ice-rich frozen clay, split Hopkinson pressure bar (SHPB) tests were performed on frozen clay specimens with initial moisture contents of 20%–1,000% under different temperatures, strain rates, and stress states. The stress–strain curves, dynamic strength, peak strain, absorbed energy density, failure mode, and failure progress were studied. The experimental results revealed the following: (1) in the radial-free state, the stress–strain curve of frozen clay with initial moisture contents ranging from 20% to 85% and 1,000% could be divided into three stages: elasticity, plasticity, and failure. In addition, a double peak phenomenon occurs in the stress–strain curves within the initial moisture content range of 120%–480%. (2) In the radial-free state, as the initial moisture content increased, the dynamic strength first increased to a maximum value, then decreased to a minimum value less than the dynamic strength of ice, and eventually increased marginally to the dynamic strength of ice. However, the variation in dynamic peak strain with initial moisture content followed a decrease–increase–decrease three-stage pattern. (3) In the passive confining pressure state, the initial moisture content of frozen soil determined its sensitivity to the confining pressure. (4) The high-speed camera test results indicated that the failure of the ice-rich frozen clay was mainly caused by tensile cracks. The degree of failure of the frozen clay specimens became more evident as the moisture content and strain rate increased. In the passive confining pressure state, the ice-rich frozen clay specimens remained intact except for a small amount of edge peeling.
    • Download: (3.234Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Mechanical Properties and Damage Evolution Behaviors of Ice-Rich Frozen Soil with Various Initial Moisture Contents

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298860
    Collections
    • Journal of Cold Regions Engineering

    Show full item record

    contributor authorHuasong Xiang
    contributor authorDongdong Ma
    contributor authorXinpeng Wang
    contributor authorZhiwei Zhou
    date accessioned2024-12-24T10:24:26Z
    date available2024-12-24T10:24:26Z
    date copyright12/1/2024 12:00:00 AM
    date issued2024
    identifier otherJCRGEI.CRENG-789.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298860
    description abstractTo investigate the dynamic mechanical response and damage evolution behavior of ice-rich frozen clay, split Hopkinson pressure bar (SHPB) tests were performed on frozen clay specimens with initial moisture contents of 20%–1,000% under different temperatures, strain rates, and stress states. The stress–strain curves, dynamic strength, peak strain, absorbed energy density, failure mode, and failure progress were studied. The experimental results revealed the following: (1) in the radial-free state, the stress–strain curve of frozen clay with initial moisture contents ranging from 20% to 85% and 1,000% could be divided into three stages: elasticity, plasticity, and failure. In addition, a double peak phenomenon occurs in the stress–strain curves within the initial moisture content range of 120%–480%. (2) In the radial-free state, as the initial moisture content increased, the dynamic strength first increased to a maximum value, then decreased to a minimum value less than the dynamic strength of ice, and eventually increased marginally to the dynamic strength of ice. However, the variation in dynamic peak strain with initial moisture content followed a decrease–increase–decrease three-stage pattern. (3) In the passive confining pressure state, the initial moisture content of frozen soil determined its sensitivity to the confining pressure. (4) The high-speed camera test results indicated that the failure of the ice-rich frozen clay was mainly caused by tensile cracks. The degree of failure of the frozen clay specimens became more evident as the moisture content and strain rate increased. In the passive confining pressure state, the ice-rich frozen clay specimens remained intact except for a small amount of edge peeling.
    publisherAmerican Society of Civil Engineers
    titleDynamic Mechanical Properties and Damage Evolution Behaviors of Ice-Rich Frozen Soil with Various Initial Moisture Contents
    typeJournal Article
    journal volume38
    journal issue4
    journal titleJournal of Cold Regions Engineering
    identifier doi10.1061/JCRGEI.CRENG-789
    journal fristpage04024026-1
    journal lastpage04024026-15
    page15
    treeJournal of Cold Regions Engineering:;2024:;Volume ( 038 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian