YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Tensile–Shear Behavior of Loess and the Mechanism of the Tensile Strength Measured by the Unconfined Penetration Test

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 010::page 04024217-1
    Author:
    Xuyang Wu
    ,
    Fujun Niu
    ,
    Qingguo Liang
    ,
    Chunqing Li
    ,
    Yunhu Shang
    ,
    Zhanju Lin
    DOI: 10.1061/IJGNAI.GMENG-10000
    Publisher: American Society of Civil Engineers
    Abstract: The tensile strength is an important parameter in engineering. Many engineering-related problems in buildings as well as the damage caused to them during natural disasters occur owing to a lack of tensile strength. The unconfined penetration (UP) test is an indirect method to measure the tensile strength of soil. Analyses of the mechanism of the UP test and simulations based on the discrete-element method have shown that the UP test is a complex process involving tensile and shear strengths. In this study, the authors use the modified Mohr–Coulomb model to establish a joint criterion for the failure of the tensile strength and the shear strength of loess, and derive expressions for the correlations between the relevant mechanical parameters. A combination of the results of the aforementioned model and laboratory tests showed the following: (1) the process of failure of loess samples during the UP test consisted of four stages: (I) the shaping of the wedge-shaped split body, (II) tension-induced fracture, (III) the yield stage, and (IV) damage to the sample; (2) the tensile strength of the loess decreased exponentially with its saturation; (3) the ratio of the unconfined compressive and cohesive strengths to the tensile strength of the remolded loess was 1.37 times that of the undisturbed loess, while the ratio of the unconfined compressive strength of remolded loess to its cohesion was similar to that of undisturbed loess; (4) the wedge-splitting angle ranged from 13° to 23°, and had a negative correlation with the internal angle of friction, a positive correlation with the water content, and decreased exponentially with the tensile strength.
    • Download: (2.795Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Tensile–Shear Behavior of Loess and the Mechanism of the Tensile Strength Measured by the Unconfined Penetration Test

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298801
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorXuyang Wu
    contributor authorFujun Niu
    contributor authorQingguo Liang
    contributor authorChunqing Li
    contributor authorYunhu Shang
    contributor authorZhanju Lin
    date accessioned2024-12-24T10:22:33Z
    date available2024-12-24T10:22:33Z
    date copyright10/1/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-10000.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298801
    description abstractThe tensile strength is an important parameter in engineering. Many engineering-related problems in buildings as well as the damage caused to them during natural disasters occur owing to a lack of tensile strength. The unconfined penetration (UP) test is an indirect method to measure the tensile strength of soil. Analyses of the mechanism of the UP test and simulations based on the discrete-element method have shown that the UP test is a complex process involving tensile and shear strengths. In this study, the authors use the modified Mohr–Coulomb model to establish a joint criterion for the failure of the tensile strength and the shear strength of loess, and derive expressions for the correlations between the relevant mechanical parameters. A combination of the results of the aforementioned model and laboratory tests showed the following: (1) the process of failure of loess samples during the UP test consisted of four stages: (I) the shaping of the wedge-shaped split body, (II) tension-induced fracture, (III) the yield stage, and (IV) damage to the sample; (2) the tensile strength of the loess decreased exponentially with its saturation; (3) the ratio of the unconfined compressive and cohesive strengths to the tensile strength of the remolded loess was 1.37 times that of the undisturbed loess, while the ratio of the unconfined compressive strength of remolded loess to its cohesion was similar to that of undisturbed loess; (4) the wedge-splitting angle ranged from 13° to 23°, and had a negative correlation with the internal angle of friction, a positive correlation with the water content, and decreased exponentially with the tensile strength.
    publisherAmerican Society of Civil Engineers
    titleThe Tensile–Shear Behavior of Loess and the Mechanism of the Tensile Strength Measured by the Unconfined Penetration Test
    typeJournal Article
    journal volume24
    journal issue10
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-10000
    journal fristpage04024217-1
    journal lastpage04024217-12
    page12
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian