YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Artificial Intelligence in Design Automation: A Two-Stage Framework for Structure Configuration and Design

    Source: Journal of Construction Engineering and Management:;2024:;Volume ( 150 ):;issue: 008::page 04024083-1
    Author:
    Mingshu Li
    ,
    Qiu Zheng
    ,
    Baabak Ashuri
    DOI: 10.1061/JCEMD4.COENG-14409
    Publisher: American Society of Civil Engineers
    Abstract: Civil engineering design problems are inherently complex, characterized by iterative processes, multiple criteria, and time-consuming manual design work. Traditional methods often struggle to rapidly reach optimal designs, lacking guarantees of achieving optimality. With the advent of recent advances in artificial intelligence (AI), this study attempts to answer the research question: How AI algorithms can expedite the civil engineering design process, enhancing efficiency and accuracy in reaching optimal solutions with fewer resources. The research employs a Markov decision process-based AI framework, integrating configuration design and refinement in a unified approach. The methodology begins with the Markov decision-making process to mathematically model the design process, followed by reinforcement learning for automatic design and refinement of solutions. Applied to a planar truss bridge design problem, the AI design agent produced feasible truss designs under various constraints efficiently, demonstrating superior capability and flexibility. The results indicate an average improvement of 12% in accuracy and 88% in computational efficiency over traditional methods. The meaning and significance of the results lie in the innovative integration of Markov decision-making and reinforcement learning into a unified two-stage design framework, significantly advancing the body of knowledge in civil engineering design automation. The speed and accuracy of the AI design agent validate the feasibility of the proposed model and highlight its potential in effectively solving complex civil engineering design problems. The directions for follow-up research are suggested to extend this framework to a wider array of design challenges and to refine the AI agent’s adaptability in more diverse design contexts.
    • Download: (2.882Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Artificial Intelligence in Design Automation: A Two-Stage Framework for Structure Configuration and Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298765
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorMingshu Li
    contributor authorQiu Zheng
    contributor authorBaabak Ashuri
    date accessioned2024-12-24T10:21:17Z
    date available2024-12-24T10:21:17Z
    date copyright8/1/2024 12:00:00 AM
    date issued2024
    identifier otherJCEMD4.COENG-14409.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298765
    description abstractCivil engineering design problems are inherently complex, characterized by iterative processes, multiple criteria, and time-consuming manual design work. Traditional methods often struggle to rapidly reach optimal designs, lacking guarantees of achieving optimality. With the advent of recent advances in artificial intelligence (AI), this study attempts to answer the research question: How AI algorithms can expedite the civil engineering design process, enhancing efficiency and accuracy in reaching optimal solutions with fewer resources. The research employs a Markov decision process-based AI framework, integrating configuration design and refinement in a unified approach. The methodology begins with the Markov decision-making process to mathematically model the design process, followed by reinforcement learning for automatic design and refinement of solutions. Applied to a planar truss bridge design problem, the AI design agent produced feasible truss designs under various constraints efficiently, demonstrating superior capability and flexibility. The results indicate an average improvement of 12% in accuracy and 88% in computational efficiency over traditional methods. The meaning and significance of the results lie in the innovative integration of Markov decision-making and reinforcement learning into a unified two-stage design framework, significantly advancing the body of knowledge in civil engineering design automation. The speed and accuracy of the AI design agent validate the feasibility of the proposed model and highlight its potential in effectively solving complex civil engineering design problems. The directions for follow-up research are suggested to extend this framework to a wider array of design challenges and to refine the AI agent’s adaptability in more diverse design contexts.
    publisherAmerican Society of Civil Engineers
    titleApplication of Artificial Intelligence in Design Automation: A Two-Stage Framework for Structure Configuration and Design
    typeJournal Article
    journal volume150
    journal issue8
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/JCEMD4.COENG-14409
    journal fristpage04024083-1
    journal lastpage04024083-12
    page12
    treeJournal of Construction Engineering and Management:;2024:;Volume ( 150 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian