YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Compressive Behavior of FRP–UHPC/ECC–Steel Double-Skin Tubular Columns under Eccentric Loading

    Source: Journal of Composites for Construction:;2024:;Volume ( 028 ):;issue: 003::page 04024016-1
    Author:
    G. M. Chen
    ,
    Y. Z. Guo
    ,
    Guan Lin
    ,
    Y. Xiong
    DOI: 10.1061/JCCOF2.CCENG-4279
    Publisher: American Society of Civil Engineers
    Abstract: Hybrid double-skin tubular columns (DSTCs), which consist of an outer fiber-reinforced polymer (FRP) tube, an inner steel tube, and a concrete annular layer between the two tubes, possess many advantages, such as high load resistance and large deformation capacity and excellent durability. The use of ultrahigh-performance concrete (UHPC) or engineered cementitious composites (ECCs) instead of normal strength concrete (NSC) in the annular layer, given the advantages such as the ultrahigh strength of UHPC and strain hardening and high toughness feature of ECC, endows the DSTCs with additional high performance, such as an enhanced load-carrying capacity (with UHPC) and an improved cracking resistance (with ECC). The behavior of such DSTC specimens with UHPC or ECC that are subjected to eccentric loading was investigated for the first time, to the best of the authors’ knowledge, and the results are reported in this paper. The DSTC specimens with NSC and ECC under eccentric compression exhibited similar great ductility with a bilinear shape for the axial load–deformation curves. In addition, the initial cracking of the FRP tube at the tension side of DSTC specimens with ECC or NSC occurred later than that of DSTC specimens with UHPC, which might imply the better durability performance of DSTC specimens with ECC or NSC during the serviceability state.
    • Download: (7.529Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Compressive Behavior of FRP–UHPC/ECC–Steel Double-Skin Tubular Columns under Eccentric Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298681
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorG. M. Chen
    contributor authorY. Z. Guo
    contributor authorGuan Lin
    contributor authorY. Xiong
    date accessioned2024-12-24T10:18:40Z
    date available2024-12-24T10:18:40Z
    date copyright6/1/2024 12:00:00 AM
    date issued2024
    identifier otherJCCOF2.CCENG-4279.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298681
    description abstractHybrid double-skin tubular columns (DSTCs), which consist of an outer fiber-reinforced polymer (FRP) tube, an inner steel tube, and a concrete annular layer between the two tubes, possess many advantages, such as high load resistance and large deformation capacity and excellent durability. The use of ultrahigh-performance concrete (UHPC) or engineered cementitious composites (ECCs) instead of normal strength concrete (NSC) in the annular layer, given the advantages such as the ultrahigh strength of UHPC and strain hardening and high toughness feature of ECC, endows the DSTCs with additional high performance, such as an enhanced load-carrying capacity (with UHPC) and an improved cracking resistance (with ECC). The behavior of such DSTC specimens with UHPC or ECC that are subjected to eccentric loading was investigated for the first time, to the best of the authors’ knowledge, and the results are reported in this paper. The DSTC specimens with NSC and ECC under eccentric compression exhibited similar great ductility with a bilinear shape for the axial load–deformation curves. In addition, the initial cracking of the FRP tube at the tension side of DSTC specimens with ECC or NSC occurred later than that of DSTC specimens with UHPC, which might imply the better durability performance of DSTC specimens with ECC or NSC during the serviceability state.
    publisherAmerican Society of Civil Engineers
    titleCompressive Behavior of FRP–UHPC/ECC–Steel Double-Skin Tubular Columns under Eccentric Loading
    typeJournal Article
    journal volume28
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/JCCOF2.CCENG-4279
    journal fristpage04024016-1
    journal lastpage04024016-20
    page20
    treeJournal of Composites for Construction:;2024:;Volume ( 028 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian