YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Intelligent Cloud-Based IoT-Enabled Multimodal Edge Sensing Device for Automated, Real-Time, Comprehensive, and Standardized Water Quality Monitoring and Assessment Process Using Multisensor Data Fusion Technologies

    Source: Journal of Computing in Civil Engineering:;2024:;Volume ( 038 ):;issue: 006::page 04024029-1
    Author:
    Mohsen Mohammadi
    ,
    Ghiwa Assaf
    ,
    Rayan H. Assaad
    ,
    Aichih “Jasmine” Chang
    DOI: 10.1061/JCCEE5.CPENG-5989
    Publisher: American Society of Civil Engineers
    Abstract: Amid escalating global challenges such as population growth, pollution, and climate change, access to safe and clean water has emerged as a critical issue. It is estimated that there are 4 billion cases of water-related diseases worldwide that cause 3.4 million deaths every year. This underscores the urgent need for efficient water quality monitoring and assessment. Traditional assessment techniques include laboratory-based methods that are manual, costly, time-consuming, and risky. Although some studies leveraged Internet of Things (IoT)-based systems to examine water quality, they only relied on a limited number of water quality parameters (and thus do not offer a comprehensive and accurate water quality assessment), mainly due to the technical difficulties to integrate multiple sensors to a single device. In fact, due to the issues of multimodality, heterogeneity, and complexity of data, the interoperability among sensors with various measurements, sampling rates, and technical requirements makes it very challenging to seamlessly integrate multiple sensors into one device. This study overcame these technical challenges by leveraging multisensor data fusion capabilities to develop an intelligent cloud-based IoT multimodal edge sensing device to provide an automated, real-time, and comprehensive assessment process of water quality. First, a total of nine water quality parameters were identified and considered. Second, the sensing device was designed and developed using an ESP32 embedded system, which is a low-cost, low-power system on a chip (SoC) microcontroller integrated with Wi-Fi and dual-mode Bluetooth connectivity by fusing data from six different sensors that measure the nine identified water parameters on the edge. Third, the overall water quality was evaluated using the National Sanitation Foundation Water Quality Index (NSFWQI). Fourth, a cloud-based server was created to publish the data instantly, and a graphical user interface (GUI) was developed to provide easy-to-understand real-time visualization and information of the water quality. The real-world applicability and practicality of the developed IoT-enabled sensing device was tested and verified in a pilot project (i.e., a case study) of a building located in Newark, New Jersey, for a duration of 6 months. This paper adds to the body of knowledge by being the first research developing a single IoT-enabled device that is capable of reporting NSFWQI in real-time based on 9 water quality indicators encompassing both physical [temperature, total dissolved solids (TDS), turbidity, and pH] and chemical [potassium, phosphorus, nitrogen, dissolved oxygen (DO), and 5-day biochemical oxygen demand (BOD5)] parameters. Thus, this study serves as a multifaceted improvement across different dimensions, fostering healthier, more efficient, and technologically advanced environments.
    • Download: (2.217Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Intelligent Cloud-Based IoT-Enabled Multimodal Edge Sensing Device for Automated, Real-Time, Comprehensive, and Standardized Water Quality Monitoring and Assessment Process Using Multisensor Data Fusion Technologies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298675
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorMohsen Mohammadi
    contributor authorGhiwa Assaf
    contributor authorRayan H. Assaad
    contributor authorAichih “Jasmine” Chang
    date accessioned2024-12-24T10:18:31Z
    date available2024-12-24T10:18:31Z
    date copyright11/1/2024 12:00:00 AM
    date issued2024
    identifier otherJCCEE5.CPENG-5989.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298675
    description abstractAmid escalating global challenges such as population growth, pollution, and climate change, access to safe and clean water has emerged as a critical issue. It is estimated that there are 4 billion cases of water-related diseases worldwide that cause 3.4 million deaths every year. This underscores the urgent need for efficient water quality monitoring and assessment. Traditional assessment techniques include laboratory-based methods that are manual, costly, time-consuming, and risky. Although some studies leveraged Internet of Things (IoT)-based systems to examine water quality, they only relied on a limited number of water quality parameters (and thus do not offer a comprehensive and accurate water quality assessment), mainly due to the technical difficulties to integrate multiple sensors to a single device. In fact, due to the issues of multimodality, heterogeneity, and complexity of data, the interoperability among sensors with various measurements, sampling rates, and technical requirements makes it very challenging to seamlessly integrate multiple sensors into one device. This study overcame these technical challenges by leveraging multisensor data fusion capabilities to develop an intelligent cloud-based IoT multimodal edge sensing device to provide an automated, real-time, and comprehensive assessment process of water quality. First, a total of nine water quality parameters were identified and considered. Second, the sensing device was designed and developed using an ESP32 embedded system, which is a low-cost, low-power system on a chip (SoC) microcontroller integrated with Wi-Fi and dual-mode Bluetooth connectivity by fusing data from six different sensors that measure the nine identified water parameters on the edge. Third, the overall water quality was evaluated using the National Sanitation Foundation Water Quality Index (NSFWQI). Fourth, a cloud-based server was created to publish the data instantly, and a graphical user interface (GUI) was developed to provide easy-to-understand real-time visualization and information of the water quality. The real-world applicability and practicality of the developed IoT-enabled sensing device was tested and verified in a pilot project (i.e., a case study) of a building located in Newark, New Jersey, for a duration of 6 months. This paper adds to the body of knowledge by being the first research developing a single IoT-enabled device that is capable of reporting NSFWQI in real-time based on 9 water quality indicators encompassing both physical [temperature, total dissolved solids (TDS), turbidity, and pH] and chemical [potassium, phosphorus, nitrogen, dissolved oxygen (DO), and 5-day biochemical oxygen demand (BOD5)] parameters. Thus, this study serves as a multifaceted improvement across different dimensions, fostering healthier, more efficient, and technologically advanced environments.
    publisherAmerican Society of Civil Engineers
    titleAn Intelligent Cloud-Based IoT-Enabled Multimodal Edge Sensing Device for Automated, Real-Time, Comprehensive, and Standardized Water Quality Monitoring and Assessment Process Using Multisensor Data Fusion Technologies
    typeJournal Article
    journal volume38
    journal issue6
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/JCCEE5.CPENG-5989
    journal fristpage04024029-1
    journal lastpage04024029-18
    page18
    treeJournal of Computing in Civil Engineering:;2024:;Volume ( 038 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian