YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulations of Abutment PRB Structures with Post-Tensioned Unbonded Prestressing Tendons for Highway Bridges under Horizontal Seismic Loads

    Source: Journal of Bridge Engineering:;2024:;Volume ( 029 ):;issue: 011::page 04024082-1
    Author:
    Wenpeng Wu
    ,
    Jialong He
    ,
    Lifeng Li
    ,
    Huihui Li
    DOI: 10.1061/JBENF2.BEENG-6712
    Publisher: American Society of Civil Engineers
    Abstract: Traditional sacrificial concrete retaining blocks (CRBs) play a significant role in reducing the excessive transverse displacements of bridge superstructures and protecting the substructures from severe damage during seismic events. However, rehabilitating these CRBs after earthquakes is very difficult. Thus, many previous studies proposed the prefabricated retaining blocks (PRBs) with the unbonded post-tensioned prestressing tendons (PTs), which has been proven to be effective in maintaining the same functionality as that of traditional sacrificial CRBs while also simplifying their postearthquake rehabilitation. However, the response mechanisms and influential parameters of the abutment PRB under the horizontal seismic loads are unclear, affecting its further application in practical bridge engineering. This study established the three-dimensional (3D) finite-element (FE) model of the abutment PRB designed by the previous researcher and validated the feasibility and effectiveness of studying its seismic behavior through the available experimental results. Additionally, comprehensive parametric studies were performed to examine the effects of the friction coefficients, initial tension forces, and tensile strength of PTs on the seismic behavior of the abutment PRB. Subsequently, to fully utilize the mechanical merits of ultrahigh-performance concrete (UHPC), this paper proposed the modified abutment UHPC-PRB structures and their hysteretic behavior and damage modes were compared with those of the original ones through numerical simulations and available test results in the literature. Finally, the results indicated that (1) the developed FE models could accurately simulate the seismic behavior of the abutment PRBs; (2) the friction effect between the PRB body and side surface of the abutment stem wall had significant impacts on the hysteretic behavior and energy-dissipation performance of the abutment PRBs; (3) the critical rotational load, horizontal loading strength, deformation ability, energy-dissipation ability, and self-resetting capacity of the abutment PRBs could be improved with the increase of the initial tension force and tensile strength of PTs; and (4) the proposed replaceable abutment UHPC-PRB structures exhibited superior seismic performance and outperformed mechanical merits compared to traditional sacrificial CRBs.
    • Download: (2.329Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulations of Abutment PRB Structures with Post-Tensioned Unbonded Prestressing Tendons for Highway Bridges under Horizontal Seismic Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298640
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorWenpeng Wu
    contributor authorJialong He
    contributor authorLifeng Li
    contributor authorHuihui Li
    date accessioned2024-12-24T10:17:23Z
    date available2024-12-24T10:17:23Z
    date copyright11/1/2024 12:00:00 AM
    date issued2024
    identifier otherJBENF2.BEENG-6712.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298640
    description abstractTraditional sacrificial concrete retaining blocks (CRBs) play a significant role in reducing the excessive transverse displacements of bridge superstructures and protecting the substructures from severe damage during seismic events. However, rehabilitating these CRBs after earthquakes is very difficult. Thus, many previous studies proposed the prefabricated retaining blocks (PRBs) with the unbonded post-tensioned prestressing tendons (PTs), which has been proven to be effective in maintaining the same functionality as that of traditional sacrificial CRBs while also simplifying their postearthquake rehabilitation. However, the response mechanisms and influential parameters of the abutment PRB under the horizontal seismic loads are unclear, affecting its further application in practical bridge engineering. This study established the three-dimensional (3D) finite-element (FE) model of the abutment PRB designed by the previous researcher and validated the feasibility and effectiveness of studying its seismic behavior through the available experimental results. Additionally, comprehensive parametric studies were performed to examine the effects of the friction coefficients, initial tension forces, and tensile strength of PTs on the seismic behavior of the abutment PRB. Subsequently, to fully utilize the mechanical merits of ultrahigh-performance concrete (UHPC), this paper proposed the modified abutment UHPC-PRB structures and their hysteretic behavior and damage modes were compared with those of the original ones through numerical simulations and available test results in the literature. Finally, the results indicated that (1) the developed FE models could accurately simulate the seismic behavior of the abutment PRBs; (2) the friction effect between the PRB body and side surface of the abutment stem wall had significant impacts on the hysteretic behavior and energy-dissipation performance of the abutment PRBs; (3) the critical rotational load, horizontal loading strength, deformation ability, energy-dissipation ability, and self-resetting capacity of the abutment PRBs could be improved with the increase of the initial tension force and tensile strength of PTs; and (4) the proposed replaceable abutment UHPC-PRB structures exhibited superior seismic performance and outperformed mechanical merits compared to traditional sacrificial CRBs.
    publisherAmerican Society of Civil Engineers
    titleNumerical Simulations of Abutment PRB Structures with Post-Tensioned Unbonded Prestressing Tendons for Highway Bridges under Horizontal Seismic Loads
    typeJournal Article
    journal volume29
    journal issue11
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/JBENF2.BEENG-6712
    journal fristpage04024082-1
    journal lastpage04024082-16
    page16
    treeJournal of Bridge Engineering:;2024:;Volume ( 029 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian