YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Novel Hybrid Aeroengine Modeling Method for Combining Data-Driven Modules

    Source: Journal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 005::page 04024055-1
    Author:
    Wen Cai
    ,
    Yong-Ping Zhao
    ,
    Ye Zhu
    ,
    Jun Yin
    ,
    Zhan-Yan Xu
    ,
    Wei-Min Liu
    DOI: 10.1061/JAEEEZ.ASENG-5531
    Publisher: American Society of Civil Engineers
    Abstract: Aeroengine models are widely used to identify aerodynamic parameters of components and play an important role in many applications. Due to differences in gas path characteristics, traditional physics-based models do not typically match actual engines. This paper proposes a new hybrid modeling framework that combines data-driven modules. The proposed method adds a steady-state correction module and a dynamic compensation module on the basis of the physics-based model, reducing the differences in gas path characteristics through two stages of modeling, and obtaining the final hybrid model. The steady-state correction module uses a particle swarm optimization (PSO) algorithm, and the dynamic compensation module uses a long short-term memory (LSTM) neural network. The modeling method is validated using actual data from different engine individuals, and the proposed method demonstrates better performance than traditional methods.
    • Download: (4.437Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Novel Hybrid Aeroengine Modeling Method for Combining Data-Driven Modules

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298567
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorWen Cai
    contributor authorYong-Ping Zhao
    contributor authorYe Zhu
    contributor authorJun Yin
    contributor authorZhan-Yan Xu
    contributor authorWei-Min Liu
    date accessioned2024-12-24T10:14:54Z
    date available2024-12-24T10:14:54Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherJAEEEZ.ASENG-5531.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298567
    description abstractAeroengine models are widely used to identify aerodynamic parameters of components and play an important role in many applications. Due to differences in gas path characteristics, traditional physics-based models do not typically match actual engines. This paper proposes a new hybrid modeling framework that combines data-driven modules. The proposed method adds a steady-state correction module and a dynamic compensation module on the basis of the physics-based model, reducing the differences in gas path characteristics through two stages of modeling, and obtaining the final hybrid model. The steady-state correction module uses a particle swarm optimization (PSO) algorithm, and the dynamic compensation module uses a long short-term memory (LSTM) neural network. The modeling method is validated using actual data from different engine individuals, and the proposed method demonstrates better performance than traditional methods.
    publisherAmerican Society of Civil Engineers
    titleA Novel Hybrid Aeroengine Modeling Method for Combining Data-Driven Modules
    typeJournal Article
    journal volume37
    journal issue5
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/JAEEEZ.ASENG-5531
    journal fristpage04024055-1
    journal lastpage04024055-16
    page16
    treeJournal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian