YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Stall Alleviation of a Helicopter Blade Section in Forward Flight Condition Using an Optimized Combination of Active Nose Droop and Active Gurney Flap

    Source: Journal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 005::page 04024050-1
    Author:
    Abbas Kargarian
    ,
    S. M. Hossein Karimian
    DOI: 10.1061/JAEEEZ.ASENG-5429
    Publisher: American Society of Civil Engineers
    Abstract: This study investigates the potential of an optimized combination of active nose droop and active Gurney flap (CADAG) in a new flow control strategy to manage dynamic stall over a pitching blade section under variable Mach number flow. The optimization method employs the genetic algorithm coupled with a computational fluid dynamic (CFD) solver and artificial neural network. The base blade section belongs to a section positioned at r/R=0.865 of the rotor blade of the UH-60A helicopter in forward flight condition. A high relative angle of attack on the retreating side makes the flow susceptible to dynamic stall. A nose droop is employed to control the dynamic stall of the blade section, and a Gurney flap is used to maintain the balance of the generated lift of the blade during 360° of rotation. A comprehensive investigation is performed to determine the most significant parameters affecting the performance of the present combined active flow control. The ratio of the total generated lift to the drag is chosen as the objective function of the optimization. Results show that this ratio and the total generated lift in one rotation cycle increase by 193% and 13%, respectively, at the optimum condition of the present combined active flow control, while the ratio of the generated lift over the advancing side to the retreating side is equal to that of the base blade section. In addition, the dynamic stall hysteresis loop reduces significantly, and the maximum value of the drag coefficient and the negative aerodynamic damping decrease up to 87% and 83% compared to the base blade section, respectively. In general, the proposed innovative combined active flow control is an adjustable method to alleviate dynamic stall and improve the aerodynamic performance of rotary wings in different operation conditions. The rotary blades are extensively used in rotorcraft, turbo engines, and wind turbines. Despite their massive use, they suffer from some essential issues, of which the most important one is the so-called dynamic stall. Dynamic stall is a complex phenomenon that limits the performance of the rotary blades. Due to the physics governing a rotary wing, such as a helicopter rotor blade, dynamic stall and flow separation are very common. Understanding dynamic stall physics and providing solutions to prevent it is still one of the main challenges of aerodynamic scientists. The present study introduces a novel adjustable method for practically alleviating the dynamic stall on helicopter blade section in forward flight conditions to improve its aerodynamic performance in different operational conditions. A comprehensive investigation is carried out to determine the key parameters affecting the proposed method. These findings can serve as a valuable tool for other researchers to develop various active flow control strategies. This article applies an optimization process using artificial neural networks, genetic algorithms, and CFD tools, which forms a comprehensive framework that can be easily extended to other applications.
    • Download: (5.446Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Stall Alleviation of a Helicopter Blade Section in Forward Flight Condition Using an Optimized Combination of Active Nose Droop and Active Gurney Flap

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298560
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorAbbas Kargarian
    contributor authorS. M. Hossein Karimian
    date accessioned2024-12-24T10:14:42Z
    date available2024-12-24T10:14:42Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherJAEEEZ.ASENG-5429.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298560
    description abstractThis study investigates the potential of an optimized combination of active nose droop and active Gurney flap (CADAG) in a new flow control strategy to manage dynamic stall over a pitching blade section under variable Mach number flow. The optimization method employs the genetic algorithm coupled with a computational fluid dynamic (CFD) solver and artificial neural network. The base blade section belongs to a section positioned at r/R=0.865 of the rotor blade of the UH-60A helicopter in forward flight condition. A high relative angle of attack on the retreating side makes the flow susceptible to dynamic stall. A nose droop is employed to control the dynamic stall of the blade section, and a Gurney flap is used to maintain the balance of the generated lift of the blade during 360° of rotation. A comprehensive investigation is performed to determine the most significant parameters affecting the performance of the present combined active flow control. The ratio of the total generated lift to the drag is chosen as the objective function of the optimization. Results show that this ratio and the total generated lift in one rotation cycle increase by 193% and 13%, respectively, at the optimum condition of the present combined active flow control, while the ratio of the generated lift over the advancing side to the retreating side is equal to that of the base blade section. In addition, the dynamic stall hysteresis loop reduces significantly, and the maximum value of the drag coefficient and the negative aerodynamic damping decrease up to 87% and 83% compared to the base blade section, respectively. In general, the proposed innovative combined active flow control is an adjustable method to alleviate dynamic stall and improve the aerodynamic performance of rotary wings in different operation conditions. The rotary blades are extensively used in rotorcraft, turbo engines, and wind turbines. Despite their massive use, they suffer from some essential issues, of which the most important one is the so-called dynamic stall. Dynamic stall is a complex phenomenon that limits the performance of the rotary blades. Due to the physics governing a rotary wing, such as a helicopter rotor blade, dynamic stall and flow separation are very common. Understanding dynamic stall physics and providing solutions to prevent it is still one of the main challenges of aerodynamic scientists. The present study introduces a novel adjustable method for practically alleviating the dynamic stall on helicopter blade section in forward flight conditions to improve its aerodynamic performance in different operational conditions. A comprehensive investigation is carried out to determine the key parameters affecting the proposed method. These findings can serve as a valuable tool for other researchers to develop various active flow control strategies. This article applies an optimization process using artificial neural networks, genetic algorithms, and CFD tools, which forms a comprehensive framework that can be easily extended to other applications.
    publisherAmerican Society of Civil Engineers
    titleDynamic Stall Alleviation of a Helicopter Blade Section in Forward Flight Condition Using an Optimized Combination of Active Nose Droop and Active Gurney Flap
    typeJournal Article
    journal volume37
    journal issue5
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/JAEEEZ.ASENG-5429
    journal fristpage04024050-1
    journal lastpage04024050-18
    page18
    treeJournal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian