YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Trajectory Planning and Control of Multiple Quadcopters for Mars Exploration

    Source: Journal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 004::page 04024038-1
    Author:
    Hankun Jiang
    ,
    Kaiyuan Chen
    ,
    Runqi Chai
    ,
    Jin Yu
    ,
    Chun Guo
    ,
    Yuanqing Xia
    DOI: 10.1061/JAEEEZ.ASENG-5270
    Publisher: American Society of Civil Engineers
    Abstract: The trajectory optimization of multiple quadcopters for Mars exploration has been a challenging task due to a difficult nonconvex space formed by multiple quadcopters in the flight, the complex dynamics model, and complicated obstacle environments. We propose a distributed optimization algorithm (DiPenOpt) using direct collocation methods to solve the optimization in the nonconvex space. The DiPenOpt algorithm contains a penalty function method to transfer the nonconvex space into a convex one and an iterative optimization strategy employing initial value selection methods to enhance the algorithm’s convergence rate. We design a position-tracking controller to ensure that the quadcopters can effectively follow trajectories generated by the DiPenOpt, regardless of initial position deviations and uncertainties. We compare the results of the DiPenOpt with other algorithms and find that DiPenOpt has a faster solution speed and shows superior robustness for trajectory optimization of multiple quadcopters in large and complex environments. The simulation results show that the position-tracking controller can ensure error convergence and stabilize the flight path when the quadcopter has an initial error. When exploring Mars with multiple quadcopters, ensuring they move efficiently and safely is critical. Think of it like trying to coordinate several quadcopters in a maze-like environment, where every quadcopter needs its own clear path. Our research introduces a new way (DiPenOpt) to help these quadcopters find their best paths, even in complicated surroundings. Our method makes challenging path-finding problems simpler, and we have added tools to make sure quadcopters stick to their paths, even if they start off a little off-course or have uncertain disturbances. Compared to other methods, DiPenOpt is faster and better suited for situations where there are many quadcopters and obstacles. In simple terms, if we were to send a team of quadcopters to explore Mars, our method would make it easier for them to navigate and provide more reliable results, which is crucial for successful space missions.
    • Download: (2.118Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Trajectory Planning and Control of Multiple Quadcopters for Mars Exploration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298544
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorHankun Jiang
    contributor authorKaiyuan Chen
    contributor authorRunqi Chai
    contributor authorJin Yu
    contributor authorChun Guo
    contributor authorYuanqing Xia
    date accessioned2024-12-24T10:14:09Z
    date available2024-12-24T10:14:09Z
    date copyright7/1/2024 12:00:00 AM
    date issued2024
    identifier otherJAEEEZ.ASENG-5270.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298544
    description abstractThe trajectory optimization of multiple quadcopters for Mars exploration has been a challenging task due to a difficult nonconvex space formed by multiple quadcopters in the flight, the complex dynamics model, and complicated obstacle environments. We propose a distributed optimization algorithm (DiPenOpt) using direct collocation methods to solve the optimization in the nonconvex space. The DiPenOpt algorithm contains a penalty function method to transfer the nonconvex space into a convex one and an iterative optimization strategy employing initial value selection methods to enhance the algorithm’s convergence rate. We design a position-tracking controller to ensure that the quadcopters can effectively follow trajectories generated by the DiPenOpt, regardless of initial position deviations and uncertainties. We compare the results of the DiPenOpt with other algorithms and find that DiPenOpt has a faster solution speed and shows superior robustness for trajectory optimization of multiple quadcopters in large and complex environments. The simulation results show that the position-tracking controller can ensure error convergence and stabilize the flight path when the quadcopter has an initial error. When exploring Mars with multiple quadcopters, ensuring they move efficiently and safely is critical. Think of it like trying to coordinate several quadcopters in a maze-like environment, where every quadcopter needs its own clear path. Our research introduces a new way (DiPenOpt) to help these quadcopters find their best paths, even in complicated surroundings. Our method makes challenging path-finding problems simpler, and we have added tools to make sure quadcopters stick to their paths, even if they start off a little off-course or have uncertain disturbances. Compared to other methods, DiPenOpt is faster and better suited for situations where there are many quadcopters and obstacles. In simple terms, if we were to send a team of quadcopters to explore Mars, our method would make it easier for them to navigate and provide more reliable results, which is crucial for successful space missions.
    publisherAmerican Society of Civil Engineers
    titleTrajectory Planning and Control of Multiple Quadcopters for Mars Exploration
    typeJournal Article
    journal volume37
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/JAEEEZ.ASENG-5270
    journal fristpage04024038-1
    journal lastpage04024038-13
    page13
    treeJournal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian