YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aerodynamic and Aeroacoustic Optimization of UAV Rotor Based on Proper Orthogonal Decomposition Method

    Source: Journal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 004::page 04024037-1
    Author:
    Hanru Liu
    ,
    Lei Zhu
    ,
    Jiahui Li
    ,
    Yan Ma
    ,
    Pengfei Ren
    DOI: 10.1061/JAEEEZ.ASENG-5269
    Publisher: American Society of Civil Engineers
    Abstract: Aiming at raising the efficiency of multidisciplinary optimization of UAV rotor aerodynamics and aeroacoustics, this paper established a low-order method of rotor aerodynamics and noise prediction based on lifting line theory (LLT) and FWH acoustic analogy theory. The maximum errors between the low-order method and the high-fidelity CFD results are 1.53% and 3.3 dB for the thrust and overall sound pressure level (OASPL) respectively, demonstrating the ability of design optimization by the low-order LLT method. Combined with the proper orthogonal decomposition (POD) dimension reduction technique to reduce the variable space, a multidisciplinary optimization of rotor aerodynamics and noise was implemented. The rotor thrust and OASPL were taken as the optimization objectives, and the chord length, thickness, and blade twist angle at different spanwise positions were taken as the design variables. The results show that the proposed optimization strategy effectively reduces the design space, the convergence process is greatly accelerated by coupling the low-order LLT-FWH prediction method, and the whole optimization process is only about 0.094% of the computational resource of the method based on unsteady CFD and conventional optimization method. Compared with the original rotor, the thrust at the design condition is increased by 1.66%, and the OASPL is maximally reduced by 3.10 dB. After optimization, the aerodynamic load fluctuation in the middle of the rotor blade (40%–80% spanwise) is significantly reduced, and the high vorticity area in the wake is reduced from the middle to the blade tip (45%–100% spanwise).
    • Download: (3.012Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aerodynamic and Aeroacoustic Optimization of UAV Rotor Based on Proper Orthogonal Decomposition Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298543
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorHanru Liu
    contributor authorLei Zhu
    contributor authorJiahui Li
    contributor authorYan Ma
    contributor authorPengfei Ren
    date accessioned2024-12-24T10:14:08Z
    date available2024-12-24T10:14:08Z
    date copyright7/1/2024 12:00:00 AM
    date issued2024
    identifier otherJAEEEZ.ASENG-5269.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298543
    description abstractAiming at raising the efficiency of multidisciplinary optimization of UAV rotor aerodynamics and aeroacoustics, this paper established a low-order method of rotor aerodynamics and noise prediction based on lifting line theory (LLT) and FWH acoustic analogy theory. The maximum errors between the low-order method and the high-fidelity CFD results are 1.53% and 3.3 dB for the thrust and overall sound pressure level (OASPL) respectively, demonstrating the ability of design optimization by the low-order LLT method. Combined with the proper orthogonal decomposition (POD) dimension reduction technique to reduce the variable space, a multidisciplinary optimization of rotor aerodynamics and noise was implemented. The rotor thrust and OASPL were taken as the optimization objectives, and the chord length, thickness, and blade twist angle at different spanwise positions were taken as the design variables. The results show that the proposed optimization strategy effectively reduces the design space, the convergence process is greatly accelerated by coupling the low-order LLT-FWH prediction method, and the whole optimization process is only about 0.094% of the computational resource of the method based on unsteady CFD and conventional optimization method. Compared with the original rotor, the thrust at the design condition is increased by 1.66%, and the OASPL is maximally reduced by 3.10 dB. After optimization, the aerodynamic load fluctuation in the middle of the rotor blade (40%–80% spanwise) is significantly reduced, and the high vorticity area in the wake is reduced from the middle to the blade tip (45%–100% spanwise).
    publisherAmerican Society of Civil Engineers
    titleAerodynamic and Aeroacoustic Optimization of UAV Rotor Based on Proper Orthogonal Decomposition Method
    typeJournal Article
    journal volume37
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/JAEEEZ.ASENG-5269
    journal fristpage04024037-1
    journal lastpage04024037-12
    page12
    treeJournal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian