YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Active Earth Pressure on Rigid Walls with Polyline Backs under the Translation Mode

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 011::page 04024248-1
    Author:
    Shiguo Xiao
    ,
    Yuan Qi
    ,
    Wendong Chen
    DOI: 10.1061/IJGNAI.GMENG-9956
    Publisher: American Society of Civil Engineers
    Abstract: Rigid retaining walls with polyline backs are possibly used in filling engineering, and some types of these walls may have better stability than ordinary gravity walls with planar backs. Aiming at the active earth pressure on polyline-back walls under the translation mode, an analytical method within the frame of limit equilibrium is provided according to the potential two slip surfaces intersected in the retained backfill. The proposed method focuses on the minimum slide-resisting factor of safety of the polyline-back wall to be the objective function, and it can be performed easily using the nonlinear programming approach. Analysis results of some examples show that the proposed earth pressure is close to those obtained using the test and numerical methods with an average error of about 15%. The platform width and the ratio of the upper to lower wall height in the counterweight wall have more obvious influences on earth pressure than the slip surfaces. The overall and local critical slip surfaces are considerably influenced by the lower-back and backfill surface inclinations, respectively. The counterweight wall is the optimum configuration for the overall sliding stability among the compared five polyline-back walls due to its outward-extending platform and positively inclined lower back. This work provides a calculation method for the active earth pressure on rigid walls with polyline backs under wall translation, which holds practical significance for geotechnical engineers or practitioners in filling engineering such as embankments. The proposed method can analytically solve the active earth pressure on different segments of the polyline back of gravity walls and the two critical slip surfaces intersected in the retained soil. As a result, the slide-resisting stability of the wall can be analyzed in the design. The proposed method can be used further to compare possible different types of polyline backs of a wall and then for the quick optimization design of the gravity wall. Analysis results of an example show that the counterweight wall is the optimum configuration for overall sliding stability due to its outward-extending platform and positively inclined lower back. In brief, this work can provide a significant reference for the practical design of rigid walls with polyline backs, such as counterweight walls and hunchbacked walls, based on the easily operated limit equilibrium methods.
    • Download: (1.183Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Active Earth Pressure on Rigid Walls with Polyline Backs under the Translation Mode

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298524
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorShiguo Xiao
    contributor authorYuan Qi
    contributor authorWendong Chen
    date accessioned2024-12-24T10:13:30Z
    date available2024-12-24T10:13:30Z
    date copyright11/1/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-9956.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298524
    description abstractRigid retaining walls with polyline backs are possibly used in filling engineering, and some types of these walls may have better stability than ordinary gravity walls with planar backs. Aiming at the active earth pressure on polyline-back walls under the translation mode, an analytical method within the frame of limit equilibrium is provided according to the potential two slip surfaces intersected in the retained backfill. The proposed method focuses on the minimum slide-resisting factor of safety of the polyline-back wall to be the objective function, and it can be performed easily using the nonlinear programming approach. Analysis results of some examples show that the proposed earth pressure is close to those obtained using the test and numerical methods with an average error of about 15%. The platform width and the ratio of the upper to lower wall height in the counterweight wall have more obvious influences on earth pressure than the slip surfaces. The overall and local critical slip surfaces are considerably influenced by the lower-back and backfill surface inclinations, respectively. The counterweight wall is the optimum configuration for the overall sliding stability among the compared five polyline-back walls due to its outward-extending platform and positively inclined lower back. This work provides a calculation method for the active earth pressure on rigid walls with polyline backs under wall translation, which holds practical significance for geotechnical engineers or practitioners in filling engineering such as embankments. The proposed method can analytically solve the active earth pressure on different segments of the polyline back of gravity walls and the two critical slip surfaces intersected in the retained soil. As a result, the slide-resisting stability of the wall can be analyzed in the design. The proposed method can be used further to compare possible different types of polyline backs of a wall and then for the quick optimization design of the gravity wall. Analysis results of an example show that the counterweight wall is the optimum configuration for overall sliding stability due to its outward-extending platform and positively inclined lower back. In brief, this work can provide a significant reference for the practical design of rigid walls with polyline backs, such as counterweight walls and hunchbacked walls, based on the easily operated limit equilibrium methods.
    publisherAmerican Society of Civil Engineers
    titleActive Earth Pressure on Rigid Walls with Polyline Backs under the Translation Mode
    typeJournal Article
    journal volume24
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9956
    journal fristpage04024248-1
    journal lastpage04024248-10
    page10
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian