YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulating a High-Resolution Tectonic Stress Field and Predicting the Fracture Distributions in Shale Reservoirs Based on a Heterogeneous Rock Mechanics Model with Adaptive Boundary Condition Constraints

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 007::page 04024131-1
    Author:
    Lin Lu
    ,
    Jingshou Liu
    ,
    Yang Luo
    ,
    Yuanhong Lu
    ,
    Binxin Zhang
    ,
    Haimeng Yang
    DOI: 10.1061/IJGNAI.GMENG-9727
    Publisher: American Society of Civil Engineers
    Abstract: Obtaining higher-resolution and more realistic characteristics of tectonic stress fields is the goal of research into tectonic stress field simulations. In this study, a regional heterogeneous rock mechanics model was established on the basis of seismic, logging, and sample experimental data. The simulation results show that the minimum principal stress values in the lower Niutitang formation are between 25.0 and 120.0 MPa. The quantitative distribution prediction results for shale reservoir fractures based on the high-resolution tectonic stress field numerical model show that the fracture development zones in the Sangzhi block are mainly distributed near the fault, fold axis turning, and fold wing in an NE–SW orientation. There are two types of fractures developed in this region: shear fractures and tensile fractures. The shear fractures mainly developed near the NE–SW-oriented faults, with shear fracture rates ranging from 1 to 3, and the tensile fractures mainly developed in the southeast wing of the Wudaoshui anticline, with tensile fracture rates ranging from 1 to 2. The low fracture development zone is mainly located in the western slope of the block, with shear fracture rates and tensile fracture rates that are both < 1.
    • Download: (3.718Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulating a High-Resolution Tectonic Stress Field and Predicting the Fracture Distributions in Shale Reservoirs Based on a Heterogeneous Rock Mechanics Model with Adaptive Boundary Condition Constraints

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298496
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorLin Lu
    contributor authorJingshou Liu
    contributor authorYang Luo
    contributor authorYuanhong Lu
    contributor authorBinxin Zhang
    contributor authorHaimeng Yang
    date accessioned2024-12-24T10:12:35Z
    date available2024-12-24T10:12:35Z
    date copyright7/1/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-9727.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298496
    description abstractObtaining higher-resolution and more realistic characteristics of tectonic stress fields is the goal of research into tectonic stress field simulations. In this study, a regional heterogeneous rock mechanics model was established on the basis of seismic, logging, and sample experimental data. The simulation results show that the minimum principal stress values in the lower Niutitang formation are between 25.0 and 120.0 MPa. The quantitative distribution prediction results for shale reservoir fractures based on the high-resolution tectonic stress field numerical model show that the fracture development zones in the Sangzhi block are mainly distributed near the fault, fold axis turning, and fold wing in an NE–SW orientation. There are two types of fractures developed in this region: shear fractures and tensile fractures. The shear fractures mainly developed near the NE–SW-oriented faults, with shear fracture rates ranging from 1 to 3, and the tensile fractures mainly developed in the southeast wing of the Wudaoshui anticline, with tensile fracture rates ranging from 1 to 2. The low fracture development zone is mainly located in the western slope of the block, with shear fracture rates and tensile fracture rates that are both < 1.
    publisherAmerican Society of Civil Engineers
    titleSimulating a High-Resolution Tectonic Stress Field and Predicting the Fracture Distributions in Shale Reservoirs Based on a Heterogeneous Rock Mechanics Model with Adaptive Boundary Condition Constraints
    typeJournal Article
    journal volume24
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9727
    journal fristpage04024131-1
    journal lastpage04024131-13
    page13
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian