YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    3D Numerical Modeling of the Inertial and Kinematic Interactions of Inclined Pile Groups in Liquefiable Soils

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 008::page 04024161-1
    Author:
    Gang Zheng
    ,
    Wenbin Zhang
    ,
    Haizuo Zhou
    ,
    Davide Forcellini
    ,
    Jihui Zhao
    ,
    Tianqi Zhang
    DOI: 10.1061/IJGNAI.GMENG-9705
    Publisher: American Society of Civil Engineers
    Abstract: Previous earthquake events indicate that pile foundations in liquefiable soils are vulnerable to damage due to the coupling of inertial and kinematic effects. Inclined piles are widely applied in structures located in liquefiable soils, but few investigations of the coupling of the superstructure–pile inertial and soil–pile kinematic effects have been conducted. To address this gap, this study adopted a three-dimensional (3D) numerical model to investigate the coupling of inertial and kinematic effects in pile foundations with different inclination angles. The pile head bending moment was employed to represent the pile response, while the soil surface displacement and structure acceleration were utilized to quantify the kinematic and inertial effects. The role of the inclination angle on the interactions between inertial and kinematic effects is herein considered for pile groups. In particular, the inertial effect significantly influences the behavior of pile groups with larger inclination angles, whereas the kinematic effect predominates the pile head moment in vertical pile groups. In this paper, the influence of the pile inclination angle, superstructure configuration, and earthquake intensity on the interactions was investigated. The principal findings revealed that the kinematic effect dominates in the vertical pile group irrespective of the properties of the superstructure, while the inertial effect plays a significant role in the response of the inclined pile groups, especially for superstructures with considerable heights. Inclined piles are vulnerable to damage due to the interaction of inertial and kinematic effects during earthquakes. This study conducted a series of three-dimensional (3D) finite-element simulations to investigate the interaction of inertial and kinematic effects in pile foundations with different inclination angles. The influence of pile inclination angle, superstructure height, and earthquake characteristics was investigated. In current practices, various codes and pseudostatic methods have been adopted to sum a percentage of the inertia-induced bending moment and another percentage of the kinematic-induced bending moment. This study indicates that under certain conditions, the simple summing of the bending moment induced by the inertial and kinematic effects could be inaccurate. The present study identified several factors that influence the interaction of inertial and kinematic effects on piles with different inclination angles. The inclined piles in liquefied soil, especially for supporting tall and heavy superstructure, attention should be given to the influence of inertial effect on the pile head bending moment.
    • Download: (3.507Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      3D Numerical Modeling of the Inertial and Kinematic Interactions of Inclined Pile Groups in Liquefiable Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298439
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorGang Zheng
    contributor authorWenbin Zhang
    contributor authorHaizuo Zhou
    contributor authorDavide Forcellini
    contributor authorJihui Zhao
    contributor authorTianqi Zhang
    date accessioned2024-12-24T10:10:43Z
    date available2024-12-24T10:10:43Z
    date copyright8/1/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-9705.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298439
    description abstractPrevious earthquake events indicate that pile foundations in liquefiable soils are vulnerable to damage due to the coupling of inertial and kinematic effects. Inclined piles are widely applied in structures located in liquefiable soils, but few investigations of the coupling of the superstructure–pile inertial and soil–pile kinematic effects have been conducted. To address this gap, this study adopted a three-dimensional (3D) numerical model to investigate the coupling of inertial and kinematic effects in pile foundations with different inclination angles. The pile head bending moment was employed to represent the pile response, while the soil surface displacement and structure acceleration were utilized to quantify the kinematic and inertial effects. The role of the inclination angle on the interactions between inertial and kinematic effects is herein considered for pile groups. In particular, the inertial effect significantly influences the behavior of pile groups with larger inclination angles, whereas the kinematic effect predominates the pile head moment in vertical pile groups. In this paper, the influence of the pile inclination angle, superstructure configuration, and earthquake intensity on the interactions was investigated. The principal findings revealed that the kinematic effect dominates in the vertical pile group irrespective of the properties of the superstructure, while the inertial effect plays a significant role in the response of the inclined pile groups, especially for superstructures with considerable heights. Inclined piles are vulnerable to damage due to the interaction of inertial and kinematic effects during earthquakes. This study conducted a series of three-dimensional (3D) finite-element simulations to investigate the interaction of inertial and kinematic effects in pile foundations with different inclination angles. The influence of pile inclination angle, superstructure height, and earthquake characteristics was investigated. In current practices, various codes and pseudostatic methods have been adopted to sum a percentage of the inertia-induced bending moment and another percentage of the kinematic-induced bending moment. This study indicates that under certain conditions, the simple summing of the bending moment induced by the inertial and kinematic effects could be inaccurate. The present study identified several factors that influence the interaction of inertial and kinematic effects on piles with different inclination angles. The inclined piles in liquefied soil, especially for supporting tall and heavy superstructure, attention should be given to the influence of inertial effect on the pile head bending moment.
    publisherAmerican Society of Civil Engineers
    title3D Numerical Modeling of the Inertial and Kinematic Interactions of Inclined Pile Groups in Liquefiable Soils
    typeJournal Article
    journal volume24
    journal issue8
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9705
    journal fristpage04024161-1
    journal lastpage04024161-13
    page13
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian