YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Urban Planning and Development
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Urban Planning and Development
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development and Validation of a Heat Resilience Index: Measuring Communities Resilience to Extreme Heat Events

    Source: Journal of Urban Planning and Development:;2024:;Volume ( 150 ):;issue: 004::page 04024034-1
    Author:
    Ghiwa Assaf
    ,
    Rayan H. Assaad
    DOI: 10.1061/JUPDDM.UPENG-4646
    Publisher: American Society of Civil Engineers
    Abstract: The level of preparedness of communities to heat-related consequences varies. While several studies have developed heat vulnerability indices, little-to-no research efforts were directed to assess the heat resilience of communities. To that extent, this paper develops and validates a heat resilience index (HRI). First, a dataset of 44 indicators affecting heat resilience was collected and grouped into five categories: sociodemographic, land use/land cover (LULC), health facilities, meteorological, and geographic factors. Second, principal component analysis (PCA) was used to calculate the weights or importance of each indicator. Based on the calculated weights, five heat resilience subindices were developed for the five categories. Third, the overall HRI was developed as a weighted average of the five calculated subindices. Fourth, the developed HRI was scientifically validated based on real-world heat-related illnesses data. The HRI was demonstrated for the State of New Jersey, where the results showed that more than 71% of the studied census tracts have a poor resilience toward heat waves. Furthermore, the results highlighted that the following indicators affect heat resilience the most: median income, poverty, percentage of people younger than 5 years old, land area, building area, annual Normalized Difference Vegetation Index (NDVI), summer NDVI, number of hospitals, mean annual temperature, minimum temperature, maximum temperature, and urban elevation. Also, the results identified the LULC category as the most influential category on the overall heat resilience. The findings could assist in developing appropriate heat management and mitigation plans to enhance communities' ability to resist future heat waves, where the same method could be used to assess heat resilience for other states and countries worldwide through developing the associated dataset. Ultimately, this research adds to the body of knowledge by proposing a structured framework for developing a novel heat resilience index based on a comprehensive list of 44 indicators.
    • Download: (1.439Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development and Validation of a Heat Resilience Index: Measuring Communities Resilience to Extreme Heat Events

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298334
    Collections
    • Journal of Urban Planning and Development

    Show full item record

    contributor authorGhiwa Assaf
    contributor authorRayan H. Assaad
    date accessioned2024-12-24T10:07:16Z
    date available2024-12-24T10:07:16Z
    date copyright12/1/2024 12:00:00 AM
    date issued2024
    identifier otherJUPDDM.UPENG-4646.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298334
    description abstractThe level of preparedness of communities to heat-related consequences varies. While several studies have developed heat vulnerability indices, little-to-no research efforts were directed to assess the heat resilience of communities. To that extent, this paper develops and validates a heat resilience index (HRI). First, a dataset of 44 indicators affecting heat resilience was collected and grouped into five categories: sociodemographic, land use/land cover (LULC), health facilities, meteorological, and geographic factors. Second, principal component analysis (PCA) was used to calculate the weights or importance of each indicator. Based on the calculated weights, five heat resilience subindices were developed for the five categories. Third, the overall HRI was developed as a weighted average of the five calculated subindices. Fourth, the developed HRI was scientifically validated based on real-world heat-related illnesses data. The HRI was demonstrated for the State of New Jersey, where the results showed that more than 71% of the studied census tracts have a poor resilience toward heat waves. Furthermore, the results highlighted that the following indicators affect heat resilience the most: median income, poverty, percentage of people younger than 5 years old, land area, building area, annual Normalized Difference Vegetation Index (NDVI), summer NDVI, number of hospitals, mean annual temperature, minimum temperature, maximum temperature, and urban elevation. Also, the results identified the LULC category as the most influential category on the overall heat resilience. The findings could assist in developing appropriate heat management and mitigation plans to enhance communities' ability to resist future heat waves, where the same method could be used to assess heat resilience for other states and countries worldwide through developing the associated dataset. Ultimately, this research adds to the body of knowledge by proposing a structured framework for developing a novel heat resilience index based on a comprehensive list of 44 indicators.
    publisherAmerican Society of Civil Engineers
    titleDevelopment and Validation of a Heat Resilience Index: Measuring Communities Resilience to Extreme Heat Events
    typeJournal Article
    journal volume150
    journal issue4
    journal titleJournal of Urban Planning and Development
    identifier doi10.1061/JUPDDM.UPENG-4646
    journal fristpage04024034-1
    journal lastpage04024034-15
    page15
    treeJournal of Urban Planning and Development:;2024:;Volume ( 150 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian