YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Behavior of Sand Reinforced with Disposable Face Mask Chips under Biaxial Shear Conditions

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 007::page 04024115-1
    Author:
    Wang-Qi Xu
    ,
    Zhen-Yu Yin
    ,
    Shao-Heng He
    ,
    Na Yang
    DOI: 10.1061/IJGNAI.GMENG-9604
    Publisher: American Society of Civil Engineers
    Abstract: The coronavirus pandemic (COVID-19) has led to a surge in disposable mask waste, posing an urgent environmental challenge. This study explores a sustainable solution by using mask chips as reinforcement material in geotechnical engineering, simultaneously improving ground strength and recycling waste. The mechanical behavior of Fujian sand reinforced with mask chips under plane strain biaxial shear condition was examined. Biaxial shear tests were performed on dense pure sand and sand samples containing three mask chip sizes (20 mm × 5 mm, 10 mm × 10 mm, and 12 mm × 3 mm) at a 0.5% mass ratio, under effective lateral pressures of 50 and 100 kPa. The test results show that incorporating mask chips improved strength and delayed stress peak, with the 20 mm × 5 mm chips demonstrating the best performance. Within the tested lateral pressure range, the sample dilates along the minor principal strain direction during shearing. The volumetric strain of mask–sand mixtures exhibits more significant contraction before the dilation compared with pure sand. Moreover, two distinct shear band shapes were observed through imaging technique where the thickness of the shear band decreases as the lateral pressure rises. Additionally, the Roscoe solution was found to provide the closest approximation of the inclination angle of the shear band in mask-reinforced sand.
    • Download: (1.059Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Behavior of Sand Reinforced with Disposable Face Mask Chips under Biaxial Shear Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298306
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorWang-Qi Xu
    contributor authorZhen-Yu Yin
    contributor authorShao-Heng He
    contributor authorNa Yang
    date accessioned2024-12-24T10:06:18Z
    date available2024-12-24T10:06:18Z
    date copyright7/1/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-9604.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298306
    description abstractThe coronavirus pandemic (COVID-19) has led to a surge in disposable mask waste, posing an urgent environmental challenge. This study explores a sustainable solution by using mask chips as reinforcement material in geotechnical engineering, simultaneously improving ground strength and recycling waste. The mechanical behavior of Fujian sand reinforced with mask chips under plane strain biaxial shear condition was examined. Biaxial shear tests were performed on dense pure sand and sand samples containing three mask chip sizes (20 mm × 5 mm, 10 mm × 10 mm, and 12 mm × 3 mm) at a 0.5% mass ratio, under effective lateral pressures of 50 and 100 kPa. The test results show that incorporating mask chips improved strength and delayed stress peak, with the 20 mm × 5 mm chips demonstrating the best performance. Within the tested lateral pressure range, the sample dilates along the minor principal strain direction during shearing. The volumetric strain of mask–sand mixtures exhibits more significant contraction before the dilation compared with pure sand. Moreover, two distinct shear band shapes were observed through imaging technique where the thickness of the shear band decreases as the lateral pressure rises. Additionally, the Roscoe solution was found to provide the closest approximation of the inclination angle of the shear band in mask-reinforced sand.
    publisherAmerican Society of Civil Engineers
    titleMechanical Behavior of Sand Reinforced with Disposable Face Mask Chips under Biaxial Shear Conditions
    typeJournal Article
    journal volume24
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9604
    journal fristpage04024115-1
    journal lastpage04024115-9
    page9
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian