YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Combined Correlation Analysis and Multilinear Regression for Strength Model of Cement-Stabilized Clayey Soils

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 009::page 04024190-1
    Author:
    Yalei Wu
    ,
    Junjie Yang
    ,
    Xiaoli Liu
    ,
    Yuting Lu
    ,
    Ruifan Lu
    DOI: 10.1061/IJGNAI.GMENG-9579
    Publisher: American Society of Civil Engineers
    Abstract: Establishing a strength model for cement-stabilized clayey soils is crucial to the design and construction of cement-reinforced foundation projects. Numerous studies have used the parameters to establish the strength model, but the selection of the key characterization parameters that determine the strength development remains challenging. Therefore, more studies and indoor tests are required to verify the parameters. This study designs cement-stabilized pure clay particles (i.e., kaolin) with various characterization parameters and conducts a series of unconfined compressive strength tests. Using the results from the strength tests to clarify the influence mechanism for the characterization parameters, the strongly correlated characterization parameters were identified with correlation analysis, and these parameters were used to establish a multilinear regression model for strength. The experimental results showed that Pearson’s correlation analysis could effectively identify the relationship between the characterization parameters of the soil particles, water, and cement, and the strength of cement-stabilized clayey soils at different curing times and their correlation intensity. The multilinear regression-based strength model was determined based on a strong Pearson’s correlation. The predicted value is similar to the measured value, with a correlation coefficient of 0.985, a mean absolute error (MAE) of 163.80 kPa, and the predicted root mean square error (RMSE) of 225.99 kPa. This study’s findings could provide theoretical support for the strength design and performance prediction of cement-stabilized clayey soils.
    • Download: (2.773Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Combined Correlation Analysis and Multilinear Regression for Strength Model of Cement-Stabilized Clayey Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298273
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorYalei Wu
    contributor authorJunjie Yang
    contributor authorXiaoli Liu
    contributor authorYuting Lu
    contributor authorRuifan Lu
    date accessioned2024-12-24T10:05:14Z
    date available2024-12-24T10:05:14Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-9579.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298273
    description abstractEstablishing a strength model for cement-stabilized clayey soils is crucial to the design and construction of cement-reinforced foundation projects. Numerous studies have used the parameters to establish the strength model, but the selection of the key characterization parameters that determine the strength development remains challenging. Therefore, more studies and indoor tests are required to verify the parameters. This study designs cement-stabilized pure clay particles (i.e., kaolin) with various characterization parameters and conducts a series of unconfined compressive strength tests. Using the results from the strength tests to clarify the influence mechanism for the characterization parameters, the strongly correlated characterization parameters were identified with correlation analysis, and these parameters were used to establish a multilinear regression model for strength. The experimental results showed that Pearson’s correlation analysis could effectively identify the relationship between the characterization parameters of the soil particles, water, and cement, and the strength of cement-stabilized clayey soils at different curing times and their correlation intensity. The multilinear regression-based strength model was determined based on a strong Pearson’s correlation. The predicted value is similar to the measured value, with a correlation coefficient of 0.985, a mean absolute error (MAE) of 163.80 kPa, and the predicted root mean square error (RMSE) of 225.99 kPa. This study’s findings could provide theoretical support for the strength design and performance prediction of cement-stabilized clayey soils.
    publisherAmerican Society of Civil Engineers
    titleCombined Correlation Analysis and Multilinear Regression for Strength Model of Cement-Stabilized Clayey Soils
    typeJournal Article
    journal volume24
    journal issue9
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9579
    journal fristpage04024190-1
    journal lastpage04024190-14
    page14
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian