YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bernoulli–Gaussian Model with Model Parameter Estimation

    Source: Journal of Surveying Engineering:;2024:;Volume ( 150 ):;issue: 004::page 04024012-1
    Author:
    Yangkang Yu
    ,
    Ling Yang
    ,
    Yunzhong Shen
    DOI: 10.1061/JSUED2.SUENG-1510
    Publisher: American Society of Civil Engineers
    Abstract: First, this paper introduces a statistical model of gross errors, namely the Bernoulli–Gaussian (BG) model, which characterizes the gross error as a product of a Bernoulli variable and a Gaussian variable. The BG model offers a framework to interpret various causes of outliers through the perspective of gross errors. In addition, it unifies commonly used observation models for outliers by adjusting the range of BG model parameters. Second, this paper proposes an estimation method for BG model parameters based on the expectation maximization (EM) algorithm. This approach attributes different gross error parameters for distinct types of observations, facilitating parameter estimation in both single-source and multisource observation systems. Additionally, by organizing equations in the form of individual observations, its applicability can be broadened to both static and dynamic scenarios. Finally, a normal sample example and a Global Navigation Satellite System (GNSS) positioning example verified the effectiveness of the proposed method for estimating the BG model parameters.
    • Download: (912.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bernoulli–Gaussian Model with Model Parameter Estimation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298267
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorYangkang Yu
    contributor authorLing Yang
    contributor authorYunzhong Shen
    date accessioned2024-12-24T10:05:02Z
    date available2024-12-24T10:05:02Z
    date copyright11/1/2024 12:00:00 AM
    date issued2024
    identifier otherJSUED2.SUENG-1510.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298267
    description abstractFirst, this paper introduces a statistical model of gross errors, namely the Bernoulli–Gaussian (BG) model, which characterizes the gross error as a product of a Bernoulli variable and a Gaussian variable. The BG model offers a framework to interpret various causes of outliers through the perspective of gross errors. In addition, it unifies commonly used observation models for outliers by adjusting the range of BG model parameters. Second, this paper proposes an estimation method for BG model parameters based on the expectation maximization (EM) algorithm. This approach attributes different gross error parameters for distinct types of observations, facilitating parameter estimation in both single-source and multisource observation systems. Additionally, by organizing equations in the form of individual observations, its applicability can be broadened to both static and dynamic scenarios. Finally, a normal sample example and a Global Navigation Satellite System (GNSS) positioning example verified the effectiveness of the proposed method for estimating the BG model parameters.
    publisherAmerican Society of Civil Engineers
    titleBernoulli–Gaussian Model with Model Parameter Estimation
    typeJournal Article
    journal volume150
    journal issue4
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/JSUED2.SUENG-1510
    journal fristpage04024012-1
    journal lastpage04024012-13
    page13
    treeJournal of Surveying Engineering:;2024:;Volume ( 150 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian