YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Semianalytic Solution for Two-Dimensional Consolidation of Interbedded Soil

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 009::page 04024203-1
    Author:
    Changshuai Sun
    ,
    Tianwen Yu
    ,
    Benben Liu
    ,
    Huanwei Wei
    ,
    Fang Tan
    DOI: 10.1061/IJGNAI.GMENG-9575
    Publisher: American Society of Civil Engineers
    Abstract: To consider the influence of the interaction of each clayey layer in the interbedded soils of a foundation on the soil consolidation, a two-dimensional calculation model based on the overall analysis is proposed and the controlling equations of each layer are established. A semianalytic solution for the excess pore-water pressure in the frequency domain is derived by combining the Laplace transform with the Fourier cosine transform and introducing the boundary transformation method. The theoretical solution is compared with numerical simulations for verification, and the relevant parameters are also analyzed to further explore the consolidation characteristics of the foundation. The results show that the proposed theoretical solution can effectively reflect the distribution of excess pore-water pressure in each soil layer under the given foundation conditions; the deviation of the average degree of consolidation from the numerical results is less than 2.0%. When only one sandy layer is laid out in the foundation, it is most conducive to the consolidation to arrange the sandy layer in the middle-lower part of the soil layer. When the total thickness of the sandy layer is the same, the maximum consolidation rate that can be achieved by arranging two sandy layers in the lower part of the foundation is slightly faster than that achieved by arranging a single sandy layer. When the ratio of the horizontal permeability coefficient of the sand to the permeability coefficient of the adjacent clay is greater than or equal to 20, the excess pore-water pressure in the sandy layer can be considered to be evenly distributed along the vertical direction.
    • Download: (715.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Semianalytic Solution for Two-Dimensional Consolidation of Interbedded Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298262
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorChangshuai Sun
    contributor authorTianwen Yu
    contributor authorBenben Liu
    contributor authorHuanwei Wei
    contributor authorFang Tan
    date accessioned2024-12-24T10:04:54Z
    date available2024-12-24T10:04:54Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherIJGNAI.GMENG-9575.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298262
    description abstractTo consider the influence of the interaction of each clayey layer in the interbedded soils of a foundation on the soil consolidation, a two-dimensional calculation model based on the overall analysis is proposed and the controlling equations of each layer are established. A semianalytic solution for the excess pore-water pressure in the frequency domain is derived by combining the Laplace transform with the Fourier cosine transform and introducing the boundary transformation method. The theoretical solution is compared with numerical simulations for verification, and the relevant parameters are also analyzed to further explore the consolidation characteristics of the foundation. The results show that the proposed theoretical solution can effectively reflect the distribution of excess pore-water pressure in each soil layer under the given foundation conditions; the deviation of the average degree of consolidation from the numerical results is less than 2.0%. When only one sandy layer is laid out in the foundation, it is most conducive to the consolidation to arrange the sandy layer in the middle-lower part of the soil layer. When the total thickness of the sandy layer is the same, the maximum consolidation rate that can be achieved by arranging two sandy layers in the lower part of the foundation is slightly faster than that achieved by arranging a single sandy layer. When the ratio of the horizontal permeability coefficient of the sand to the permeability coefficient of the adjacent clay is greater than or equal to 20, the excess pore-water pressure in the sandy layer can be considered to be evenly distributed along the vertical direction.
    publisherAmerican Society of Civil Engineers
    titleSemianalytic Solution for Two-Dimensional Consolidation of Interbedded Soil
    typeJournal Article
    journal volume24
    journal issue9
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9575
    journal fristpage04024203-1
    journal lastpage04024203-10
    page10
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian