YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Full-Scale Testing of Two-Tiered Steel Buckling-Restrained Braced Frames

    Source: Journal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 010::page 04024130-1
    Author:
    Moad Bani
    ,
    Ali Imanpour
    ,
    Robert Tremblay
    ,
    Brandt Saxey
    DOI: 10.1061/JSENDH.STENG-13337
    Publisher: American Society of Civil Engineers
    Abstract: A full-scale, two-tiered steel buckling-restrained braced frame (BRBF) was tested to evaluate experimentally the seismic behavior of steel multitiered BRBFs, namely, column stability response, column seismic demands, and tier deformations under a loading protocol representing earthquake ground motions. The test specimen consisted of diagonal braces oriented in opposing directions in the two adjacent tiers to create the most critical multitier response. The test frame was designed in accordance with the 2010 AISC Seismic Provisions as a lateral load-resisting system of a single-story building. The frame was subjected to a three-phase loading protocol consisting of lateral displacement time histories corresponding to a far-field ground motion record and a near-field ground motion record applied sequentially achieving total frame drifts in excess of 3.5%, followed by a final monotonic lateral displacement corresponding to 4.5% story drift. The test frame exhibited a stable response despite a non-uniform distribution of frame inelastic deformation between the tiers, which induced significant in-plane bending moments in the columns. Flexural bending, combined with a large axial compression force, led to partial yielding in the columns. Large deformation demands were also observed in the BRB yielding in tension and attracting the majority of frame lateral deformation. On the basis of test results, a displacement-based analysis approach was proposed to relate column in-plane bending and flexural stiffness to relative inelastic tier deformations.
    • Download: (2.979Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Full-Scale Testing of Two-Tiered Steel Buckling-Restrained Braced Frames

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298219
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMoad Bani
    contributor authorAli Imanpour
    contributor authorRobert Tremblay
    contributor authorBrandt Saxey
    date accessioned2024-12-24T10:03:32Z
    date available2024-12-24T10:03:32Z
    date copyright10/1/2024 12:00:00 AM
    date issued2024
    identifier otherJSENDH.STENG-13337.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298219
    description abstractA full-scale, two-tiered steel buckling-restrained braced frame (BRBF) was tested to evaluate experimentally the seismic behavior of steel multitiered BRBFs, namely, column stability response, column seismic demands, and tier deformations under a loading protocol representing earthquake ground motions. The test specimen consisted of diagonal braces oriented in opposing directions in the two adjacent tiers to create the most critical multitier response. The test frame was designed in accordance with the 2010 AISC Seismic Provisions as a lateral load-resisting system of a single-story building. The frame was subjected to a three-phase loading protocol consisting of lateral displacement time histories corresponding to a far-field ground motion record and a near-field ground motion record applied sequentially achieving total frame drifts in excess of 3.5%, followed by a final monotonic lateral displacement corresponding to 4.5% story drift. The test frame exhibited a stable response despite a non-uniform distribution of frame inelastic deformation between the tiers, which induced significant in-plane bending moments in the columns. Flexural bending, combined with a large axial compression force, led to partial yielding in the columns. Large deformation demands were also observed in the BRB yielding in tension and attracting the majority of frame lateral deformation. On the basis of test results, a displacement-based analysis approach was proposed to relate column in-plane bending and flexural stiffness to relative inelastic tier deformations.
    publisherAmerican Society of Civil Engineers
    titleFull-Scale Testing of Two-Tiered Steel Buckling-Restrained Braced Frames
    typeJournal Article
    journal volume150
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-13337
    journal fristpage04024130-1
    journal lastpage04024130-16
    page16
    treeJournal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian