YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Vulnerability Assessment of Self-Centering Prestressed Concrete Frames with and without Masonry Infill Walls: Experimental and Numerical Models

    Source: Journal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 008::page 04024087-1
    Author:
    Ruizhao Zhu
    ,
    Tong Guo
    ,
    Lianglong Song
    ,
    Kun Yang
    ,
    Gang Xu
    ,
    Solomon Tesfamariam
    DOI: 10.1061/JSENDH.STENG-13207
    Publisher: American Society of Civil Engineers
    Abstract: Interaction between masonry infill walls (MIWs) and a main structural system can impact the overall structural performance. However, there is no test to investigate the impact of MIWs on self-centering prestressed concrete (SCPC) frames, nor has there been a probabilistic performance evaluation considering the coupling effects of peak interstory drift ratio (PIDR) and residual interstory drift ratio (RIDR). This study compares the seismic performance of SCPC frames with and without MIWs through quasi-static tests and seismic risk assessment under mainshock–aftershock (MSAS) sequences. To begin, quasi-static tests on one-story SCPC frames with and without MIWs are performed to assess their seismic performance. A numerical simulation method for the SCPC frame with MIWs is then proposed and validated. Following that, the seismic performance of four multistory SCPC frames with and without MIWs is investigated under MSAS sequences at the maximum considered earthquake level. Finally, the seismic vulnerability assessment, considering the coupling effect of PIDR and RIDR under MSAS sequences, is conducted. The results indicate that cracks on the MIW present diagonal stepped cracks, and the MIW does not cause damage to the SCPC frame. When the MIW is damaged, the RIDR of the SCPC-MIW frame increases significantly; when the crack development is stable, the RIDR increases slowly as the interstory drift increases but remains at a very low level. Besides, when the MIW is damaged, an obvious deformation concentration effect occurs on the SCPC-MIW frame. The SCPC-MIW frame has a lower probability of exceeding the immediate occupancy level P(IO) than the SCPC frame, but it has a higher probability of exceeding the repairable level P(RE) when the seismic intensity is relatively small. Overall, the P(IO) and P(RE) of the SCPC and SCPC-MIW frames are higher under MSAS sequences than under MS-only sequences, except for the SCPC25 frame.
    • Download: (2.349Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Vulnerability Assessment of Self-Centering Prestressed Concrete Frames with and without Masonry Infill Walls: Experimental and Numerical Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298202
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorRuizhao Zhu
    contributor authorTong Guo
    contributor authorLianglong Song
    contributor authorKun Yang
    contributor authorGang Xu
    contributor authorSolomon Tesfamariam
    date accessioned2024-12-24T10:02:59Z
    date available2024-12-24T10:02:59Z
    date copyright8/1/2024 12:00:00 AM
    date issued2024
    identifier otherJSENDH.STENG-13207.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298202
    description abstractInteraction between masonry infill walls (MIWs) and a main structural system can impact the overall structural performance. However, there is no test to investigate the impact of MIWs on self-centering prestressed concrete (SCPC) frames, nor has there been a probabilistic performance evaluation considering the coupling effects of peak interstory drift ratio (PIDR) and residual interstory drift ratio (RIDR). This study compares the seismic performance of SCPC frames with and without MIWs through quasi-static tests and seismic risk assessment under mainshock–aftershock (MSAS) sequences. To begin, quasi-static tests on one-story SCPC frames with and without MIWs are performed to assess their seismic performance. A numerical simulation method for the SCPC frame with MIWs is then proposed and validated. Following that, the seismic performance of four multistory SCPC frames with and without MIWs is investigated under MSAS sequences at the maximum considered earthquake level. Finally, the seismic vulnerability assessment, considering the coupling effect of PIDR and RIDR under MSAS sequences, is conducted. The results indicate that cracks on the MIW present diagonal stepped cracks, and the MIW does not cause damage to the SCPC frame. When the MIW is damaged, the RIDR of the SCPC-MIW frame increases significantly; when the crack development is stable, the RIDR increases slowly as the interstory drift increases but remains at a very low level. Besides, when the MIW is damaged, an obvious deformation concentration effect occurs on the SCPC-MIW frame. The SCPC-MIW frame has a lower probability of exceeding the immediate occupancy level P(IO) than the SCPC frame, but it has a higher probability of exceeding the repairable level P(RE) when the seismic intensity is relatively small. Overall, the P(IO) and P(RE) of the SCPC and SCPC-MIW frames are higher under MSAS sequences than under MS-only sequences, except for the SCPC25 frame.
    publisherAmerican Society of Civil Engineers
    titleSeismic Vulnerability Assessment of Self-Centering Prestressed Concrete Frames with and without Masonry Infill Walls: Experimental and Numerical Models
    typeJournal Article
    journal volume150
    journal issue8
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-13207
    journal fristpage04024087-1
    journal lastpage04024087-17
    page17
    treeJournal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian