YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flexure–Torsion Response of Compressed Open Reinforced-Concrete Cores: Experimental Strain Gradients, Numerical Methods, and Interaction Diagrams

    Source: Journal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 009::page 04024111-1
    Author:
    Ryan Hoult
    ,
    João Pacheco de Almeida
    DOI: 10.1061/JSENDH.STENG-13147
    Publisher: American Society of Civil Engineers
    Abstract: Together with axial and flexural actions, modern-designed reinforced-concrete walls can also be subjected to torsion during rare loading events, such as large-magnitude earthquakes or strong winds. For certain widely used nonplanar open cross-section geometries, this torque is resisted primarily through warping. In some cases, the longitudinal stresses caused by torsional warping can be of the same order of magnitude as those caused by flexure, which postulates a reduction of the in-plane bending moment capacity of the section. This study explores the reduction of bending moment capacity of open reinforced-concrete U-shaped core walls due to the simultaneous application of flexural, axial, and torsional loading. Initial investigations focused on strain gradients through the wall segments of reinforced-concrete U-shaped walls. Using a refined data set from a recent experimental campaign, the commonly assumed linear strain gradient used in the design of reinforced-concrete walls is challenged. Numerical methods that intrinsically rely on the observed strain gradients are then employed to compute, for a range of torque-to-bending-moment ratios, the ultimate bending moment and torque capacities from combined loading scenarios. The numerical results corroborate existing experimental results, indicating a significant reduction (almost half) in ultimate bending moment capacity when a torque equal to approximately 20% of imposed bending is applied. Interaction diagrams between the ultimate torque and bending moment show that it is possible to derive a simple relationship between the two for the purposes of structural design. These results can help formulate guidelines for future international building codes, which in their current form cannot account for the design of open sections governed by warping torsion.
    • Download: (3.508Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flexure–Torsion Response of Compressed Open Reinforced-Concrete Cores: Experimental Strain Gradients, Numerical Methods, and Interaction Diagrams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298196
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorRyan Hoult
    contributor authorJoão Pacheco de Almeida
    date accessioned2024-12-24T10:02:45Z
    date available2024-12-24T10:02:45Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherJSENDH.STENG-13147.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298196
    description abstractTogether with axial and flexural actions, modern-designed reinforced-concrete walls can also be subjected to torsion during rare loading events, such as large-magnitude earthquakes or strong winds. For certain widely used nonplanar open cross-section geometries, this torque is resisted primarily through warping. In some cases, the longitudinal stresses caused by torsional warping can be of the same order of magnitude as those caused by flexure, which postulates a reduction of the in-plane bending moment capacity of the section. This study explores the reduction of bending moment capacity of open reinforced-concrete U-shaped core walls due to the simultaneous application of flexural, axial, and torsional loading. Initial investigations focused on strain gradients through the wall segments of reinforced-concrete U-shaped walls. Using a refined data set from a recent experimental campaign, the commonly assumed linear strain gradient used in the design of reinforced-concrete walls is challenged. Numerical methods that intrinsically rely on the observed strain gradients are then employed to compute, for a range of torque-to-bending-moment ratios, the ultimate bending moment and torque capacities from combined loading scenarios. The numerical results corroborate existing experimental results, indicating a significant reduction (almost half) in ultimate bending moment capacity when a torque equal to approximately 20% of imposed bending is applied. Interaction diagrams between the ultimate torque and bending moment show that it is possible to derive a simple relationship between the two for the purposes of structural design. These results can help formulate guidelines for future international building codes, which in their current form cannot account for the design of open sections governed by warping torsion.
    publisherAmerican Society of Civil Engineers
    titleFlexure–Torsion Response of Compressed Open Reinforced-Concrete Cores: Experimental Strain Gradients, Numerical Methods, and Interaction Diagrams
    typeJournal Article
    journal volume150
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-13147
    journal fristpage04024111-1
    journal lastpage04024111-16
    page16
    treeJournal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian