YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Investigation of Climate Change Effects on Design Wind Speeds along the US East and Gulf Coasts

    Source: Journal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 009::page 04024123-1
    Author:
    Aidan Hintermaier
    ,
    Ning Lin
    DOI: 10.1061/JSENDH.STENG-11899
    Publisher: American Society of Civil Engineers
    Abstract: Tropical cyclone (TC) winds control design wind speeds for much of the eastern United States. Those winds are likely to intensify with climate change, but climate change was not considered in the ASCE 7-22 design wind speed maps, potentially causing many structures to be designed with unacceptably high levels of risk. In this study, we investigate (1) the increases in design wind speed due to climate change; and (2) the resulting risk to structures if climate change is not considered. We estimated the design wind speeds for US counties affected by TCs along the Gulf and Atlantic coasts using nonstationary methods based on a set of synthetic TCs (1,000–1,500 year simulations) downscaled from the latest global climate projections (CMIP6) for the high-emissions scenario (SSP5-8.5). It was found that over the 21st century, 50-year return period winds would increase by an average of around 10% along the US Gulf and Atlantic coasts. Depending on the risk category, design lifetime, and year of construction, design wind speeds (targeting lifetime exceedance probability) are projected to increase by an average of 3%–6% for all counties studied and 6%–15% for coastal counties. For Risk Category II–IV structures, depending on the design lifetime and year of construction, 8%–36% of all counties studied and 25%–66% of coastal counties would experience projected lifetime exceedance probabilities that were at least two risk categories too low; for example, in up to 26% of all counties studied and 54% of coastal counties, a Risk Category III structure would be effectively designed as Risk Category I or lower.
    • Download: (2.522Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Investigation of Climate Change Effects on Design Wind Speeds along the US East and Gulf Coasts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298142
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAidan Hintermaier
    contributor authorNing Lin
    date accessioned2024-12-24T10:01:08Z
    date available2024-12-24T10:01:08Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherJSENDH.STENG-11899.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298142
    description abstractTropical cyclone (TC) winds control design wind speeds for much of the eastern United States. Those winds are likely to intensify with climate change, but climate change was not considered in the ASCE 7-22 design wind speed maps, potentially causing many structures to be designed with unacceptably high levels of risk. In this study, we investigate (1) the increases in design wind speed due to climate change; and (2) the resulting risk to structures if climate change is not considered. We estimated the design wind speeds for US counties affected by TCs along the Gulf and Atlantic coasts using nonstationary methods based on a set of synthetic TCs (1,000–1,500 year simulations) downscaled from the latest global climate projections (CMIP6) for the high-emissions scenario (SSP5-8.5). It was found that over the 21st century, 50-year return period winds would increase by an average of around 10% along the US Gulf and Atlantic coasts. Depending on the risk category, design lifetime, and year of construction, design wind speeds (targeting lifetime exceedance probability) are projected to increase by an average of 3%–6% for all counties studied and 6%–15% for coastal counties. For Risk Category II–IV structures, depending on the design lifetime and year of construction, 8%–36% of all counties studied and 25%–66% of coastal counties would experience projected lifetime exceedance probabilities that were at least two risk categories too low; for example, in up to 26% of all counties studied and 54% of coastal counties, a Risk Category III structure would be effectively designed as Risk Category I or lower.
    publisherAmerican Society of Civil Engineers
    titleAn Investigation of Climate Change Effects on Design Wind Speeds along the US East and Gulf Coasts
    typeJournal Article
    journal volume150
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-11899
    journal fristpage04024123-1
    journal lastpage04024123-14
    page14
    treeJournal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian