YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Interactive Deformations of Pipeline Buried in Sandy Slopes Using Numerical Modeling with a Systematic Calibration Procedure

    Source: Journal of Pipeline Systems Engineering and Practice:;2024:;Volume ( 015 ):;issue: 003::page 04024029-1
    Author:
    Reza Darvishi
    ,
    Yaser Jafarian
    ,
    Ali Lashgari
    ,
    Faradjollah Askari
    DOI: 10.1061/JPSEA2.PSENG-1567
    Publisher: American Society of Civil Engineers
    Abstract: The seismic landslide-pipe problem was investigated numerically using finite-difference code and a bounding surface soil constitutive model [Simple ANIsotropic SAND constitutive model (SANISAND)]. The SANISAND model was calibrated using triaxial monotonic and cyclic tests at the element level and shaking-table test results at the boundary value level. The results show that the calibrated parameters of the SANISAND model can predict monotonic and cyclic triaxial test results and slope displacement response properly. After the verification process, the dynamic response of a slope with the presence of buried pipes under sinusoidal input acceleration was evaluated in terms of slope displacement and the pipe axial strain. The results show that the presence of buried pipes in the slope can reduce slope surface displacement by 50%, especially for shallower burial depths of pipe (i.e., 1–1.5 m). The results of the axial strain of the pipe for changes in the burial depth and location indicate that for pipes buried in the downslope and upslope sections, deeper and shallower burial depths, respectively, lead to less axial strain being imposed on the pipe under landslide actions. The variations of slope geometric parameters (slope width and inclination angle) on slope displacement response and pipe strain patterns show that with increasing slope width and inclination angle, the displacement of sliding mass increases, and the depth of the slope failure wedge decreases. Moreover, the maximum strain of the pipe increases by 150% as the width-to-height ratio (W/H) of the slope increases from 1 to 4. With the increase in soil density, the pipe axial strain increases. The results of dynamic analysis under earthquake records showed that the axial strain of the pipe has a high correlation with the cumulative absolute velocity of seismic input.
    • Download: (4.598Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Interactive Deformations of Pipeline Buried in Sandy Slopes Using Numerical Modeling with a Systematic Calibration Procedure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298124
    Collections
    • Journal of Pipeline Systems Engineering and Practice

    Show full item record

    contributor authorReza Darvishi
    contributor authorYaser Jafarian
    contributor authorAli Lashgari
    contributor authorFaradjollah Askari
    date accessioned2024-12-24T10:00:35Z
    date available2024-12-24T10:00:35Z
    date copyright8/1/2024 12:00:00 AM
    date issued2024
    identifier otherJPSEA2.PSENG-1567.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298124
    description abstractThe seismic landslide-pipe problem was investigated numerically using finite-difference code and a bounding surface soil constitutive model [Simple ANIsotropic SAND constitutive model (SANISAND)]. The SANISAND model was calibrated using triaxial monotonic and cyclic tests at the element level and shaking-table test results at the boundary value level. The results show that the calibrated parameters of the SANISAND model can predict monotonic and cyclic triaxial test results and slope displacement response properly. After the verification process, the dynamic response of a slope with the presence of buried pipes under sinusoidal input acceleration was evaluated in terms of slope displacement and the pipe axial strain. The results show that the presence of buried pipes in the slope can reduce slope surface displacement by 50%, especially for shallower burial depths of pipe (i.e., 1–1.5 m). The results of the axial strain of the pipe for changes in the burial depth and location indicate that for pipes buried in the downslope and upslope sections, deeper and shallower burial depths, respectively, lead to less axial strain being imposed on the pipe under landslide actions. The variations of slope geometric parameters (slope width and inclination angle) on slope displacement response and pipe strain patterns show that with increasing slope width and inclination angle, the displacement of sliding mass increases, and the depth of the slope failure wedge decreases. Moreover, the maximum strain of the pipe increases by 150% as the width-to-height ratio (W/H) of the slope increases from 1 to 4. With the increase in soil density, the pipe axial strain increases. The results of dynamic analysis under earthquake records showed that the axial strain of the pipe has a high correlation with the cumulative absolute velocity of seismic input.
    publisherAmerican Society of Civil Engineers
    titleSeismic Interactive Deformations of Pipeline Buried in Sandy Slopes Using Numerical Modeling with a Systematic Calibration Procedure
    typeJournal Article
    journal volume15
    journal issue3
    journal titleJournal of Pipeline Systems Engineering and Practice
    identifier doi10.1061/JPSEA2.PSENG-1567
    journal fristpage04024029-1
    journal lastpage04024029-17
    page17
    treeJournal of Pipeline Systems Engineering and Practice:;2024:;Volume ( 015 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian