YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Road Surface Condition Monitoring in Extreme Weather Using a Feature-Learning Enhanced Mask–RCNN

    Source: Journal of Transportation Engineering, Part B: Pavements:;2024:;Volume ( 150 ):;issue: 003::page 04024030-1
    Author:
    Zhiyuan Bai
    ,
    Yue Wang
    ,
    Ancai Zhang
    ,
    Hao Wei
    ,
    Guangyuan Pan
    DOI: 10.1061/JPEODX.PVENG-1503
    Publisher: American Society of Civil Engineers
    Abstract: Road surface condition (RSC) is an important indicator in road safety studies, enabling transportation departments to employ it for conducting surveys, inspections, cleaning, and maintenance, ultimately contributing to improved performance in road upkeep. However, traditional recognition methods can be easily affected when extreme weather frequently occurs such as winter seasonal changes. To achieve real-time and automatic RSC monitoring, this paper proposes an improved Mask–region-based convolutional neural network (RCNN) based on Swin Transformer-PAFPN and a dynamic head detection network. Meanwhile, transfer learning is used to reduce training time, and data enhancement and multiscale training are applied to achieve better performance. The experimental results show that the proposed model achieves an outstanding mean average precision at 0.5 (mAP@0.5) score of 89.8 under favorable weather conditions characterized by clear visibility, surpassing other popular methods. Notably, the proposed model exhibits lower parameters and GigaFLOPS (GFLOPs) (72.41 and 158.35, respectively) compared to other popular methods, thus demanding fewer computational resources. Furthermore, in challenging weather conditions characterized by poor visibility, such as foggy and nighttime scenarios, the proposed model achieves mAP@0.5 scores of 78.50 and 82.40, respectively. These scores not only outperform those of other popular methods but also underscore the robustness of the proposed model in extreme weather conditions. This exceptional performance demonstrates the proposed model’s effectiveness in addressing complex road conditions under various meteorological circumstances, providing reliable technical support for practical traffic monitoring and road maintenance.
    • Download: (3.991Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Road Surface Condition Monitoring in Extreme Weather Using a Feature-Learning Enhanced Mask–RCNN

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298099
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorZhiyuan Bai
    contributor authorYue Wang
    contributor authorAncai Zhang
    contributor authorHao Wei
    contributor authorGuangyuan Pan
    date accessioned2024-12-24T09:59:50Z
    date available2024-12-24T09:59:50Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherJPEODX.PVENG-1503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298099
    description abstractRoad surface condition (RSC) is an important indicator in road safety studies, enabling transportation departments to employ it for conducting surveys, inspections, cleaning, and maintenance, ultimately contributing to improved performance in road upkeep. However, traditional recognition methods can be easily affected when extreme weather frequently occurs such as winter seasonal changes. To achieve real-time and automatic RSC monitoring, this paper proposes an improved Mask–region-based convolutional neural network (RCNN) based on Swin Transformer-PAFPN and a dynamic head detection network. Meanwhile, transfer learning is used to reduce training time, and data enhancement and multiscale training are applied to achieve better performance. The experimental results show that the proposed model achieves an outstanding mean average precision at 0.5 (mAP@0.5) score of 89.8 under favorable weather conditions characterized by clear visibility, surpassing other popular methods. Notably, the proposed model exhibits lower parameters and GigaFLOPS (GFLOPs) (72.41 and 158.35, respectively) compared to other popular methods, thus demanding fewer computational resources. Furthermore, in challenging weather conditions characterized by poor visibility, such as foggy and nighttime scenarios, the proposed model achieves mAP@0.5 scores of 78.50 and 82.40, respectively. These scores not only outperform those of other popular methods but also underscore the robustness of the proposed model in extreme weather conditions. This exceptional performance demonstrates the proposed model’s effectiveness in addressing complex road conditions under various meteorological circumstances, providing reliable technical support for practical traffic monitoring and road maintenance.
    publisherAmerican Society of Civil Engineers
    titleRoad Surface Condition Monitoring in Extreme Weather Using a Feature-Learning Enhanced Mask–RCNN
    typeJournal Article
    journal volume150
    journal issue3
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.PVENG-1503
    journal fristpage04024030-1
    journal lastpage04024030-13
    page13
    treeJournal of Transportation Engineering, Part B: Pavements:;2024:;Volume ( 150 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian