YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation on the Diffusion Behavior of Dry Modified SBS at the Asphalt-Aggregate Interface: Molecular Simulation and Experiments

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 002::page 04023564-1
    Author:
    Fuqiang Dong
    ,
    Shiyu Wang
    ,
    Xin Yu
    ,
    Yongjia Guo
    ,
    Yong Jin
    ,
    Haoran Zhu
    ,
    Yang Jiang
    ,
    Jinli Lu
    DOI: 10.1061/JMCEE7.MTENG-16856
    Publisher: ASCE
    Abstract: Dry modified Styrene-Butadiene-Styrene block copolymer (SBS) is an innovative method of modifying asphalt mixture that has gained attention due to its convenience, low carbon footprint, and high efficiency. To understand the diffusion behavior and micromechanism of dry modified SBS at the asphalt-aggregate interface, molecular dynamic simulation technology was employed to investigate its behavior at various temperatures. The mean square displacement, diffusion coefficient, statistical relative concentration distribution, and interfacial energy were used to calculate the diffusion and migration mechanism of dry modified SBS at the asphalt-aggregate interface. Additionally, the water-boiling test and Fourier transform infrared spectroscopy (FTIR) test were conducted to analyze the interfacial stripping form and SBS dispersion in the asphalt film. The results indicated that at high temperatures, dry modified SBS exhibited the highest mean square displacement and diffusion coefficient, suggesting that higher temperatures promoted its diffusion toward the asphalt layer. Dry modified SBS clusters and asphalt displayed opposite migration diffusion tendencies, with the migration of dry modified SBS toward the asphalt film becoming more pronounced over time. The introduction of SBS altered the distribution of asphalt components on the aggregate surface, increasing the interfacial energy and adhesion strength between asphalt and aggregate. Laboratory experiments supported these findings, confirming that dry modified SBS enhanced diffusion distribution and interfacial strength. The diffusion distribution of dry modification was found to be similar to that of wet-process SBS modified asphalt under sufficient temperature and time. Therefore, in engineering applications, raising the mixing temperature can improve the diffusion distribution of dry modified SBS, further enhancing its modification efficiency and effectiveness.
    • Download: (4.580Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation on the Diffusion Behavior of Dry Modified SBS at the Asphalt-Aggregate Interface: Molecular Simulation and Experiments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298008
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorFuqiang Dong
    contributor authorShiyu Wang
    contributor authorXin Yu
    contributor authorYongjia Guo
    contributor authorYong Jin
    contributor authorHaoran Zhu
    contributor authorYang Jiang
    contributor authorJinli Lu
    date accessioned2024-04-27T22:59:38Z
    date available2024-04-27T22:59:38Z
    date issued2024/02/01
    identifier other10.1061-JMCEE7.MTENG-16856.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298008
    description abstractDry modified Styrene-Butadiene-Styrene block copolymer (SBS) is an innovative method of modifying asphalt mixture that has gained attention due to its convenience, low carbon footprint, and high efficiency. To understand the diffusion behavior and micromechanism of dry modified SBS at the asphalt-aggregate interface, molecular dynamic simulation technology was employed to investigate its behavior at various temperatures. The mean square displacement, diffusion coefficient, statistical relative concentration distribution, and interfacial energy were used to calculate the diffusion and migration mechanism of dry modified SBS at the asphalt-aggregate interface. Additionally, the water-boiling test and Fourier transform infrared spectroscopy (FTIR) test were conducted to analyze the interfacial stripping form and SBS dispersion in the asphalt film. The results indicated that at high temperatures, dry modified SBS exhibited the highest mean square displacement and diffusion coefficient, suggesting that higher temperatures promoted its diffusion toward the asphalt layer. Dry modified SBS clusters and asphalt displayed opposite migration diffusion tendencies, with the migration of dry modified SBS toward the asphalt film becoming more pronounced over time. The introduction of SBS altered the distribution of asphalt components on the aggregate surface, increasing the interfacial energy and adhesion strength between asphalt and aggregate. Laboratory experiments supported these findings, confirming that dry modified SBS enhanced diffusion distribution and interfacial strength. The diffusion distribution of dry modification was found to be similar to that of wet-process SBS modified asphalt under sufficient temperature and time. Therefore, in engineering applications, raising the mixing temperature can improve the diffusion distribution of dry modified SBS, further enhancing its modification efficiency and effectiveness.
    publisherASCE
    titleInvestigation on the Diffusion Behavior of Dry Modified SBS at the Asphalt-Aggregate Interface: Molecular Simulation and Experiments
    typeJournal Article
    journal volume36
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-16856
    journal fristpage04023564-1
    journal lastpage04023564-14
    page14
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian