YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mesoscale Damage Detection and Surface Deterioration of Freeze–Thawed Concrete Cores Using 3D CT Scanning and Roughness Quantification

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 003::page 04023592-1
    Author:
    Lu Feng
    ,
    Xudong Chen
    ,
    Ziming Feng
    ,
    Yingjie Ning
    DOI: 10.1061/JMCEE7.MTENG-16715
    Publisher: ASCE
    Abstract: The durability of bridges plays a vital role in their regular operation and transportation, particularly as service life increases. The ability of a bridge to reach its expected service life is closely linked to its durability. In cold regions, the deterioration of bridge concrete durability due to freeze-thaw damage is a common cause of failure, posing a threat to structural safety. In this study, a highway bridge over a sluice that was built 63 years ago was selected for coring and freeze-thaw testing. Two nondestructive testing methods were employed: three-dimensional optical scanning and X-ray computed tomography (X-CT). The former was used to observe and analyze the external surface of the concrete, while the latter was used to analyze its internal structure. The surface morphology was characterized using height, spatial, hybrid parameters, and fractal dimension, and the Abbott–Firestone curve reflected the profile characteristics of the material surface. Moreover, the internal components of concrete were identified and reconstructed in three dimensions based on threshold segmentation, and the changes in internal porosity, pore fractal dimension, and pore size distribution were calculated. Finally, the evolution of bandwidth in the color heat map was analyzed, combining the gray level cooccurrence matrix (GLCM) to reflect the growth of cracks and defects with freeze-thaw cycles.
    • Download: (5.601Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mesoscale Damage Detection and Surface Deterioration of Freeze–Thawed Concrete Cores Using 3D CT Scanning and Roughness Quantification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297971
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorLu Feng
    contributor authorXudong Chen
    contributor authorZiming Feng
    contributor authorYingjie Ning
    date accessioned2024-04-27T22:58:41Z
    date available2024-04-27T22:58:41Z
    date issued2024/03/01
    identifier other10.1061-JMCEE7.MTENG-16715.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297971
    description abstractThe durability of bridges plays a vital role in their regular operation and transportation, particularly as service life increases. The ability of a bridge to reach its expected service life is closely linked to its durability. In cold regions, the deterioration of bridge concrete durability due to freeze-thaw damage is a common cause of failure, posing a threat to structural safety. In this study, a highway bridge over a sluice that was built 63 years ago was selected for coring and freeze-thaw testing. Two nondestructive testing methods were employed: three-dimensional optical scanning and X-ray computed tomography (X-CT). The former was used to observe and analyze the external surface of the concrete, while the latter was used to analyze its internal structure. The surface morphology was characterized using height, spatial, hybrid parameters, and fractal dimension, and the Abbott–Firestone curve reflected the profile characteristics of the material surface. Moreover, the internal components of concrete were identified and reconstructed in three dimensions based on threshold segmentation, and the changes in internal porosity, pore fractal dimension, and pore size distribution were calculated. Finally, the evolution of bandwidth in the color heat map was analyzed, combining the gray level cooccurrence matrix (GLCM) to reflect the growth of cracks and defects with freeze-thaw cycles.
    publisherASCE
    titleMesoscale Damage Detection and Surface Deterioration of Freeze–Thawed Concrete Cores Using 3D CT Scanning and Roughness Quantification
    typeJournal Article
    journal volume36
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-16715
    journal fristpage04023592-1
    journal lastpage04023592-15
    page15
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian