YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hybrid Effect of Nano-CaCO3 and Polypropylene Fiber on Fresh and Hardened Properties of Alkali-Activated Material

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 006::page 04024143-1
    Author:
    Li Li
    ,
    Zhili Ma
    ,
    Chengji Gao
    ,
    Aili Sun
    ,
    Bin Liu
    ,
    Beichen Pu
    DOI: 10.1061/JMCEE7.MTENG-16701
    Publisher: ASCE
    Abstract: Compared with traditional portland cementitious material, alkali-activated material (AAM) had the advantages of low carbon emission, energy saving, excellent durability, strength, and high temperature resistance. It has been proved that the addition of a fiber or nano-particle could improve the mechanical properties of AAM. The fresh and hardened properties of nano-CaCO3 (NCC) and polypropylene fiber (PPF) reinforced AAM were studied in this paper. The hybrid effects of PPF with various volume fractions (0%, 4%, and 8%), aspect ratios (0–464.52), and NCC with various content (0%, 1%, and 2%) on the slump spread, flow rate, flexural strength, compressive strength, and ultrasonic velocity of AAM were investigated. For flowability, the mixture with 0.4% 6 mm and 0.4% 12 mm PPF was the optimal, showing a positive hybrid effect. The hybrid use of PPF and NCC significantly improved the flexural strength, but the compressive strength was not significantly improved. The hybrid effect factors for compressive strength were lower than those for flexural strength. The positive hybrid effect of strength was most obvious when the nano-CaCO3 was 1%. The threshold for fiber factors was 200. Microstructure studies showed that the bridging effect of PPFs can limit the crack development and enhance the strength of AAM. Nano-CaCO3 promoted the denseness of AAM and bond between fiber and matrix. The hybrid of PPF in different lengths and NCC could decrease fiber consumption, reducing the cost and promoting the engineering application of fiber-reinforced AAMs. The effect of hybridization of calcium carbonate nano-particles with polypropylene fibers on the fresh and hardening properties of alkali-activated materials has practical applications in the construction industry. One of its main advantages is its excellent flowability, which allows the material to be self-consolidating. This property allows it to be used effectively in areas such as post-tensioned grouting, pipe concrete, and other grouting processes, where the material flows effortlessly and fills voids efficiently. In addition, the mixing effect of the CaCO3-nano-particles and the polypropylene fibers enhances the stability and strength of the material, which further enhances the durability and structural stability of the concrete elements. Overall, this blend has excellent flow and self-consolidation properties, making it an important choice for applications such as postgrouting and reinforced concrete construction.
    • Download: (9.348Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hybrid Effect of Nano-CaCO3 and Polypropylene Fiber on Fresh and Hardened Properties of Alkali-Activated Material

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297963
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorLi Li
    contributor authorZhili Ma
    contributor authorChengji Gao
    contributor authorAili Sun
    contributor authorBin Liu
    contributor authorBeichen Pu
    date accessioned2024-04-27T22:58:32Z
    date available2024-04-27T22:58:32Z
    date issued2024/06/01
    identifier other10.1061-JMCEE7.MTENG-16701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297963
    description abstractCompared with traditional portland cementitious material, alkali-activated material (AAM) had the advantages of low carbon emission, energy saving, excellent durability, strength, and high temperature resistance. It has been proved that the addition of a fiber or nano-particle could improve the mechanical properties of AAM. The fresh and hardened properties of nano-CaCO3 (NCC) and polypropylene fiber (PPF) reinforced AAM were studied in this paper. The hybrid effects of PPF with various volume fractions (0%, 4%, and 8%), aspect ratios (0–464.52), and NCC with various content (0%, 1%, and 2%) on the slump spread, flow rate, flexural strength, compressive strength, and ultrasonic velocity of AAM were investigated. For flowability, the mixture with 0.4% 6 mm and 0.4% 12 mm PPF was the optimal, showing a positive hybrid effect. The hybrid use of PPF and NCC significantly improved the flexural strength, but the compressive strength was not significantly improved. The hybrid effect factors for compressive strength were lower than those for flexural strength. The positive hybrid effect of strength was most obvious when the nano-CaCO3 was 1%. The threshold for fiber factors was 200. Microstructure studies showed that the bridging effect of PPFs can limit the crack development and enhance the strength of AAM. Nano-CaCO3 promoted the denseness of AAM and bond between fiber and matrix. The hybrid of PPF in different lengths and NCC could decrease fiber consumption, reducing the cost and promoting the engineering application of fiber-reinforced AAMs. The effect of hybridization of calcium carbonate nano-particles with polypropylene fibers on the fresh and hardening properties of alkali-activated materials has practical applications in the construction industry. One of its main advantages is its excellent flowability, which allows the material to be self-consolidating. This property allows it to be used effectively in areas such as post-tensioned grouting, pipe concrete, and other grouting processes, where the material flows effortlessly and fills voids efficiently. In addition, the mixing effect of the CaCO3-nano-particles and the polypropylene fibers enhances the stability and strength of the material, which further enhances the durability and structural stability of the concrete elements. Overall, this blend has excellent flow and self-consolidation properties, making it an important choice for applications such as postgrouting and reinforced concrete construction.
    publisherASCE
    titleHybrid Effect of Nano-CaCO3 and Polypropylene Fiber on Fresh and Hardened Properties of Alkali-Activated Material
    typeJournal Article
    journal volume36
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-16701
    journal fristpage04024143-1
    journal lastpage04024143-17
    page17
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian