YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Evaluation of Microvoid Characteristics and Relationship with Stress and Strain for Ductile Fracture

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 002::page 04023573-1
    Author:
    Surajit Dey
    ,
    Ravi Kiran
    ,
    Chad Ulven
    DOI: 10.1061/JMCEE7.MTENG-16698
    Publisher: ASCE
    Abstract: The present study aims to characterize the microvoid sizes and their statistical distribution at the instance of fracture from the fracture surface of steel specimens. To this end, uniaxial tensile tests are conducted on circumferentially notched specimens made of 17-4 PH stainless steel and ASTM A992 high-strength structural steel. The fracture surfaces of the steel test specimens are studied using a digital microscope to quantify the statistical microvoid size distribution. Furthermore, the evaluated microvoid sizes of different fracture locations are mapped with the stress and strain fields. Finally, based on the experimentally evaluated microvoid sizes, an uncoupled fracture model was adopted to predict the fracture displacement and location of ductile fracture initiation in the fractured specimens. The fracture displacements predicted using the calibrated uncoupled fracture model are within the acceptable limit. The fracture initiation locations coincided with the peak strain-averaged stress triaxiality in the fracture specimens.
    • Download: (9.265Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Evaluation of Microvoid Characteristics and Relationship with Stress and Strain for Ductile Fracture

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297962
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorSurajit Dey
    contributor authorRavi Kiran
    contributor authorChad Ulven
    date accessioned2024-04-27T22:58:30Z
    date available2024-04-27T22:58:30Z
    date issued2024/02/01
    identifier other10.1061-JMCEE7.MTENG-16698.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297962
    description abstractThe present study aims to characterize the microvoid sizes and their statistical distribution at the instance of fracture from the fracture surface of steel specimens. To this end, uniaxial tensile tests are conducted on circumferentially notched specimens made of 17-4 PH stainless steel and ASTM A992 high-strength structural steel. The fracture surfaces of the steel test specimens are studied using a digital microscope to quantify the statistical microvoid size distribution. Furthermore, the evaluated microvoid sizes of different fracture locations are mapped with the stress and strain fields. Finally, based on the experimentally evaluated microvoid sizes, an uncoupled fracture model was adopted to predict the fracture displacement and location of ductile fracture initiation in the fractured specimens. The fracture displacements predicted using the calibrated uncoupled fracture model are within the acceptable limit. The fracture initiation locations coincided with the peak strain-averaged stress triaxiality in the fracture specimens.
    publisherASCE
    titleExperimental Evaluation of Microvoid Characteristics and Relationship with Stress and Strain for Ductile Fracture
    typeJournal Article
    journal volume36
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-16698
    journal fristpage04023573-1
    journal lastpage04023573-21
    page21
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian